opencv/3rdparty/carotene/src/dot_product.cpp

261 lines
8.3 KiB
C++
Raw Normal View History

/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3-clause BSD License)
*
* Copyright (C) 2012-2015, NVIDIA Corporation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "common.hpp"
namespace CAROTENE_NS {
f64 dotProduct(const Size2D &_size,
const u8 * src0Base, ptrdiff_t src0Stride,
const u8 * src1Base, ptrdiff_t src1Stride)
{
internal::assertSupportedConfiguration();
#ifdef CAROTENE_NEON
Size2D size(_size);
if (src0Stride == src1Stride &&
src0Stride == (ptrdiff_t)(size.width))
{
size.width *= size.height;
size.height = 1;
}
// It is possible to accumulate up to 66051 uchar multiplication results in uint32 without overflow
// We process 16 elements and accumulate two new elements per step. So we could handle 66051/2*16 elements
#define DOT_UINT_BLOCKSIZE 66050*8
f64 result = 0.0;
for (size_t row = 0; row < size.height; ++row)
{
const u8 * src0 = internal::getRowPtr(src0Base, src0Stride, row);
const u8 * src1 = internal::getRowPtr(src1Base, src1Stride, row);
size_t i = 0;
uint64x2_t ws = vmovq_n_u64(0);
while(i + 16 <= size.width)
{
size_t lim = std::min(i + DOT_UINT_BLOCKSIZE, size.width) - 16;
uint32x4_t s1 = vmovq_n_u32(0);
uint32x4_t s2 = vmovq_n_u32(0);
for (; i <= lim; i += 16)
{
internal::prefetch(src0 + i);
internal::prefetch(src1 + i);
uint8x16_t vs1 = vld1q_u8(src0 + i);
uint8x16_t vs2 = vld1q_u8(src1 + i);
uint16x8_t vdot1 = vmull_u8(vget_low_u8(vs1), vget_low_u8(vs2));
uint16x8_t vdot2 = vmull_u8(vget_high_u8(vs1), vget_high_u8(vs2));
s1 = vpadalq_u16(s1, vdot1);
s2 = vpadalq_u16(s2, vdot2);
}
ws = vpadalq_u32(ws, s1);
ws = vpadalq_u32(ws, s2);
}
if(i + 8 <= size.width)
{
uint8x8_t vs1 = vld1_u8(src0 + i);
uint8x8_t vs2 = vld1_u8(src1 + i);
ws = vpadalq_u32(ws, vpaddlq_u16(vmull_u8(vs1, vs2)));
i += 8;
}
result += (double)vget_lane_u64(vadd_u64(vget_low_u64(ws), vget_high_u64(ws)), 0);
for (; i < size.width; ++i)
result += s32(src0[i]) * s32(src1[i]);
}
return result;
#else
(void)_size;
(void)src0Base;
(void)src0Stride;
(void)src1Base;
(void)src1Stride;
return 0;
#endif
}
f64 dotProduct(const Size2D &_size,
const s8 * src0Base, ptrdiff_t src0Stride,
const s8 * src1Base, ptrdiff_t src1Stride)
{
internal::assertSupportedConfiguration();
#ifdef CAROTENE_NEON
Size2D size(_size);
if (src0Stride == src1Stride &&
src0Stride == (ptrdiff_t)(size.width))
{
size.width *= size.height;
size.height = 1;
}
// It is possible to accumulate up to 131071 schar multiplication results in sint32 without overflow
// We process 16 elements and accumulate two new elements per step. So we could handle 131071/2*16 elements
#define DOT_INT_BLOCKSIZE 131070*8
f64 result = 0.0;
for (size_t row = 0; row < size.height; ++row)
{
const s8 * src0 = internal::getRowPtr(src0Base, src0Stride, row);
const s8 * src1 = internal::getRowPtr(src1Base, src1Stride, row);
size_t i = 0;
int64x2_t ws = vmovq_n_s64(0);
while(i + 16 <= size.width)
{
size_t lim = std::min(i + DOT_UINT_BLOCKSIZE, size.width) - 16;
int32x4_t s1 = vmovq_n_s32(0);
int32x4_t s2 = vmovq_n_s32(0);
for (; i <= lim; i += 16)
{
internal::prefetch(src0 + i);
internal::prefetch(src1 + i);
int8x16_t vs1 = vld1q_s8(src0 + i);
int8x16_t vs2 = vld1q_s8(src1 + i);
int16x8_t vdot1 = vmull_s8(vget_low_s8(vs1), vget_low_s8(vs2));
int16x8_t vdot2 = vmull_s8(vget_high_s8(vs1), vget_high_s8(vs2));
s1 = vpadalq_s16(s1, vdot1);
s2 = vpadalq_s16(s2, vdot2);
}
ws = vpadalq_s32(ws, s1);
ws = vpadalq_s32(ws, s2);
}
if(i + 8 <= size.width)
{
int8x8_t vs1 = vld1_s8(src0 + i);
int8x8_t vs2 = vld1_s8(src1 + i);
ws = vpadalq_s32(ws, vpaddlq_s16(vmull_s8(vs1, vs2)));
i += 8;
}
result += (double)vget_lane_s64(vadd_s64(vget_low_s64(ws), vget_high_s64(ws)), 0);
for (; i < size.width; ++i)
result += s32(src0[i]) * s32(src1[i]);
}
return result;
#else
(void)_size;
(void)src0Base;
(void)src0Stride;
(void)src1Base;
(void)src1Stride;
return 0;
#endif
}
f64 dotProduct(const Size2D &_size,
const f32 * src0Base, ptrdiff_t src0Stride,
const f32 * src1Base, ptrdiff_t src1Stride)
{
internal::assertSupportedConfiguration();
#ifdef CAROTENE_NEON
Size2D size(_size);
if (src0Stride == src1Stride &&
src0Stride == (ptrdiff_t)(size.width * sizeof(f32)))
{
size.width *= size.height;
size.height = 1;
}
#define DOT_FLOAT_BLOCKSIZE (1 << 13)
f64 result = 0.0;
for (size_t row = 0; row < size.height; ++row)
{
const f32 * src0 = internal::getRowPtr(src0Base, src0Stride, row);
const f32 * src1 = internal::getRowPtr(src1Base, src1Stride, row);
size_t i = 0;
while(i + 4 <= size.width)
{
size_t lim = std::min(i + DOT_FLOAT_BLOCKSIZE, size.width) - 4;
float32x4_t v_sum = vdupq_n_f32(0.0f);
for( ; i <= lim; i += 4 )
{
internal::prefetch(src0 + i);
internal::prefetch(src1 + i);
v_sum = vmlaq_f32(v_sum, vld1q_f32(src0 + i), vld1q_f32(src1 + i));
}
float32x2_t vres = vpadd_f32(vget_low_f32(v_sum),vget_high_f32(v_sum));
result += vget_lane_f32(vres, 0) + vget_lane_f32(vres, 1);
}
if(i + 2 <= size.width)
{
float32x2_t vres = vmul_f32(vld1_f32(src0 + i), vld1_f32(src1 + i));
result += vget_lane_f32(vres, 0) + vget_lane_f32(vres, 1);
i += 2;
}
for (; i < size.width; ++i)
result += src0[i] * src1[i];
}
return result;
#else
(void)_size;
(void)src0Base;
(void)src0Stride;
(void)src1Base;
(void)src1Stride;
return 0;
#endif
}
} // namespace CAROTENE_NS