opencv/modules/calib3d/src/fundam.cpp

1133 lines
37 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "rho.h"
#include <iostream>
namespace cv
{
/**
* This class estimates a homography \f$H\in \mathbb{R}^{3\times 3}\f$
* between \f$\mathbf{x} \in \mathbb{R}^3\f$ and
* \f$\mathbf{X} \in \mathbb{R}^3\f$ using DLT (direct linear transform)
* with algebraic distance.
*
* \f[
* \lambda \mathbf{x} = H \mathbf{X}
* \f]
* where \f$\lambda \in \mathbb{R} \f$.
*
*/
class HomographyEstimatorCallback : public PointSetRegistrator::Callback
{
public:
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
{
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
if( haveCollinearPoints(ms1, count) || haveCollinearPoints(ms2, count) )
return false;
// We check whether the minimal set of points for the homography estimation
// are geometrically consistent. We check if every 3 correspondences sets
// fulfills the constraint.
//
// The usefullness of this constraint is explained in the paper:
//
// "Speeding-up homography estimation in mobile devices"
// Journal of Real-Time Image Processing. 2013. DOI: 10.1007/s11554-012-0314-1
// Pablo Marquez-Neila, Javier Lopez-Alberca, Jose M. Buenaposada, Luis Baumela
if( count == 4 )
{
static const int tt[][3] = {{0, 1, 2}, {1, 2, 3}, {0, 2, 3}, {0, 1, 3}};
const Point2f* src = ms1.ptr<Point2f>();
const Point2f* dst = ms2.ptr<Point2f>();
int negative = 0;
for( int i = 0; i < 4; i++ )
{
const int* t = tt[i];
Matx33d A(src[t[0]].x, src[t[0]].y, 1., src[t[1]].x, src[t[1]].y, 1., src[t[2]].x, src[t[2]].y, 1.);
Matx33d B(dst[t[0]].x, dst[t[0]].y, 1., dst[t[1]].x, dst[t[1]].y, 1., dst[t[2]].x, dst[t[2]].y, 1.);
negative += determinant(A)*determinant(B) < 0;
}
if( negative != 0 && negative != 4 )
return false;
}
return true;
}
/**
* Normalization method:
* - $x$ and $y$ coordinates are normalized independently
* - first the coordinates are shifted so that the average coordinate is \f$(0,0)\f$
* - then the coordinates are scaled so that the average L1 norm is 1, i.e,
* the average L1 norm of the \f$x\f$ coordinates is 1 and the average
* L1 norm of the \f$y\f$ coordinates is also 1.
*
* @param _m1 source points containing (X,Y), depth is CV_32F with 1 column 2 channels or
* 2 columns 1 channel
* @param _m2 destination points containing (x,y), depth is CV_32F with 1 column 2 channels or
* 2 columns 1 channel
* @param _model, CV_64FC1, 3x3, normalized, i.e., the last element is 1
*/
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
int i, count = m1.checkVector(2);
const Point2f* M = m1.ptr<Point2f>();
const Point2f* m = m2.ptr<Point2f>();
double LtL[9][9], W[9][1], V[9][9];
Mat _LtL( 9, 9, CV_64F, &LtL[0][0] );
Mat matW( 9, 1, CV_64F, W );
Mat matV( 9, 9, CV_64F, V );
Mat _H0( 3, 3, CV_64F, V[8] );
Mat _Htemp( 3, 3, CV_64F, V[7] );
Point2d cM(0,0), cm(0,0), sM(0,0), sm(0,0);
for( i = 0; i < count; i++ )
{
cm.x += m[i].x; cm.y += m[i].y;
cM.x += M[i].x; cM.y += M[i].y;
}
cm.x /= count;
cm.y /= count;
cM.x /= count;
cM.y /= count;
for( i = 0; i < count; i++ )
{
sm.x += fabs(m[i].x - cm.x);
sm.y += fabs(m[i].y - cm.y);
sM.x += fabs(M[i].x - cM.x);
sM.y += fabs(M[i].y - cM.y);
}
if( fabs(sm.x) < DBL_EPSILON || fabs(sm.y) < DBL_EPSILON ||
fabs(sM.x) < DBL_EPSILON || fabs(sM.y) < DBL_EPSILON )
return 0;
sm.x = count/sm.x; sm.y = count/sm.y;
sM.x = count/sM.x; sM.y = count/sM.y;
double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 };
double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 };
Mat _invHnorm( 3, 3, CV_64FC1, invHnorm );
Mat _Hnorm2( 3, 3, CV_64FC1, Hnorm2 );
_LtL.setTo(Scalar::all(0));
for( i = 0; i < count; i++ )
{
double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y;
double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y;
double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x };
double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y };
int j, k;
for( j = 0; j < 9; j++ )
for( k = j; k < 9; k++ )
LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];
}
completeSymm( _LtL );
eigen( _LtL, matW, matV );
_Htemp = _invHnorm*_H0;
_H0 = _Htemp*_Hnorm2;
_H0.convertTo(_model, _H0.type(), 1./_H0.at<double>(2,2) );
return 1;
}
/**
* Compute the reprojection error.
* m2 = H*m1
* @param _m1 depth CV_32F, 1-channel with 2 columns or 2-channel with 1 column
* @param _m2 depth CV_32F, 1-channel with 2 columns or 2-channel with 1 column
* @param _model CV_64FC1, 3x3
* @param _err, output, CV_32FC1, square of the L2 norm
*/
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
int i, count = m1.checkVector(2);
const Point2f* M = m1.ptr<Point2f>();
const Point2f* m = m2.ptr<Point2f>();
const double* H = model.ptr<double>();
float Hf[] = { (float)H[0], (float)H[1], (float)H[2], (float)H[3], (float)H[4], (float)H[5], (float)H[6], (float)H[7] };
_err.create(count, 1, CV_32F);
float* err = _err.getMat().ptr<float>();
for( i = 0; i < count; i++ )
{
float ww = 1.f/(Hf[6]*M[i].x + Hf[7]*M[i].y + 1.f);
float dx = (Hf[0]*M[i].x + Hf[1]*M[i].y + Hf[2])*ww - m[i].x;
float dy = (Hf[3]*M[i].x + Hf[4]*M[i].y + Hf[5])*ww - m[i].y;
2017-10-31 00:13:59 +08:00
err[i] = dx*dx + dy*dy;
}
}
};
class HomographyRefineCallback : public LMSolver::Callback
{
public:
HomographyRefineCallback(InputArray _src, InputArray _dst)
{
src = _src.getMat();
dst = _dst.getMat();
}
bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
{
int i, count = src.checkVector(2);
Mat param = _param.getMat();
_err.create(count*2, 1, CV_64F);
Mat err = _err.getMat(), J;
if( _Jac.needed())
{
_Jac.create(count*2, param.rows, CV_64F);
J = _Jac.getMat();
CV_Assert( J.isContinuous() && J.cols == 8 );
}
const Point2f* M = src.ptr<Point2f>();
const Point2f* m = dst.ptr<Point2f>();
const double* h = param.ptr<double>();
double* errptr = err.ptr<double>();
double* Jptr = J.data ? J.ptr<double>() : 0;
for( i = 0; i < count; i++ )
{
double Mx = M[i].x, My = M[i].y;
double ww = h[6]*Mx + h[7]*My + 1.;
ww = fabs(ww) > DBL_EPSILON ? 1./ww : 0;
double xi = (h[0]*Mx + h[1]*My + h[2])*ww;
double yi = (h[3]*Mx + h[4]*My + h[5])*ww;
errptr[i*2] = xi - m[i].x;
errptr[i*2+1] = yi - m[i].y;
if( Jptr )
{
Jptr[0] = Mx*ww; Jptr[1] = My*ww; Jptr[2] = ww;
Jptr[3] = Jptr[4] = Jptr[5] = 0.;
Jptr[6] = -Mx*ww*xi; Jptr[7] = -My*ww*xi;
Jptr[8] = Jptr[9] = Jptr[10] = 0.;
Jptr[11] = Mx*ww; Jptr[12] = My*ww; Jptr[13] = ww;
Jptr[14] = -Mx*ww*yi; Jptr[15] = -My*ww*yi;
Jptr += 16;
}
}
return true;
}
Mat src, dst;
};
} // end namesapce cv
namespace cv{
static bool createAndRunRHORegistrator(double confidence,
int maxIters,
double ransacReprojThreshold,
int npoints,
InputArray _src,
InputArray _dst,
OutputArray _H,
OutputArray _tempMask){
Mat src = _src.getMat();
Mat dst = _dst.getMat();
Mat tempMask;
bool result;
double beta = 0.35;/* 0.35 is a value that often works. */
/* Create temporary output matrix (RHO outputs a single-precision H only). */
Mat tmpH = Mat(3, 3, CV_32FC1);
/* Create output mask. */
tempMask = Mat(npoints, 1, CV_8U);
/**
* Make use of the RHO estimator API.
*
* This is where the math happens. A homography estimation context is
* initialized, used, then finalized.
*/
Ptr<RHO_HEST> p = rhoInit();
/**
* Optional. Ideally, the context would survive across calls to
* findHomography(), but no clean way appears to exit to do so. The price
* to pay is marginally more computational work than strictly needed.
*/
rhoEnsureCapacity(p, npoints, beta);
/**
* The critical call. All parameters are heavily documented in rho.h.
*
* Currently, NR (Non-Randomness criterion) and Final Refinement (with
* internal, optimized Levenberg-Marquardt method) are enabled. However,
* while refinement seems to correctly smooth jitter most of the time, when
* refinement fails it tends to make the estimate visually very much worse.
* It may be necessary to remove the refinement flags in a future commit if
* this behaviour is too problematic.
*/
result = !!rhoHest(p,
(const float*)src.data,
(const float*)dst.data,
(char*) tempMask.data,
(unsigned) npoints,
(float) ransacReprojThreshold,
(unsigned) maxIters,
(unsigned) maxIters,
confidence,
4U,
beta,
RHO_FLAG_ENABLE_NR | RHO_FLAG_ENABLE_FINAL_REFINEMENT,
NULL,
(float*)tmpH.data);
/* Convert float homography to double precision. */
tmpH.convertTo(_H, CV_64FC1);
/* Maps non-zero mask elements to 1, for the sake of the test case. */
for(int k=0;k<npoints;k++){
tempMask.data[k] = !!tempMask.data[k];
}
tempMask.copyTo(_tempMask);
return result;
}
}
cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
int method, double ransacReprojThreshold, OutputArray _mask,
const int maxIters, const double confidence)
{
CV_INSTRUMENT_REGION()
const double defaultRANSACReprojThreshold = 3;
bool result = false;
Mat points1 = _points1.getMat(), points2 = _points2.getMat();
Mat src, dst, H, tempMask;
int npoints = -1;
for( int i = 1; i <= 2; i++ )
{
Mat& p = i == 1 ? points1 : points2;
Mat& m = i == 1 ? src : dst;
npoints = p.checkVector(2, -1, false);
if( npoints < 0 )
{
npoints = p.checkVector(3, -1, false);
if( npoints < 0 )
CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
if( npoints == 0 )
return Mat();
convertPointsFromHomogeneous(p, p);
}
p.reshape(2, npoints).convertTo(m, CV_32F);
}
CV_Assert( src.checkVector(2) == dst.checkVector(2) );
if( ransacReprojThreshold <= 0 )
ransacReprojThreshold = defaultRANSACReprojThreshold;
2013-08-13 21:03:56 +08:00
Ptr<PointSetRegistrator::Callback> cb = makePtr<HomographyEstimatorCallback>();
if( method == 0 || npoints == 4 )
{
tempMask = Mat::ones(npoints, 1, CV_8U);
result = cb->runKernel(src, dst, H) > 0;
}
else if( method == RANSAC )
result = createRANSACPointSetRegistrator(cb, 4, ransacReprojThreshold, confidence, maxIters)->run(src, dst, H, tempMask);
else if( method == LMEDS )
result = createLMeDSPointSetRegistrator(cb, 4, confidence, maxIters)->run(src, dst, H, tempMask);
else if( method == RHO )
result = createAndRunRHORegistrator(confidence, maxIters, ransacReprojThreshold, npoints, src, dst, H, tempMask);
else
CV_Error(Error::StsBadArg, "Unknown estimation method");
if( result && npoints > 4 && method != RHO)
{
compressElems( src.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
npoints = compressElems( dst.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
if( npoints > 0 )
{
Mat src1 = src.rowRange(0, npoints);
Mat dst1 = dst.rowRange(0, npoints);
src = src1;
dst = dst1;
if( method == RANSAC || method == LMEDS )
cb->runKernel( src, dst, H );
Mat H8(8, 1, CV_64F, H.ptr<double>());
2013-08-13 21:03:56 +08:00
createLMSolver(makePtr<HomographyRefineCallback>(src, dst), 10)->run(H8);
}
}
if( result )
{
if( _mask.needed() )
tempMask.copyTo(_mask);
}
else
{
H.release();
if(_mask.needed() ) {
tempMask = Mat::zeros(npoints >= 0 ? npoints : 0, 1, CV_8U);
tempMask.copyTo(_mask);
}
}
return H;
}
cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
OutputArray _mask, int method, double ransacReprojThreshold )
{
return cv::findHomography(_points1, _points2, method, ransacReprojThreshold, _mask);
}
/* Estimation of Fundamental Matrix from point correspondences.
The original code has been written by Valery Mosyagin */
/* The algorithms (except for RANSAC) and the notation have been taken from
Zhengyou Zhang's research report
"Determining the Epipolar Geometry and its Uncertainty: A Review"
that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */
/************************************** 7-point algorithm *******************************/
namespace cv
{
/**
* Compute the fundamental matrix using the 7-point algorithm.
*
* \f[
* (\mathrm{m2}_i,1)^T \mathrm{fmatrix} (\mathrm{m1}_i,1) = 0
* \f]
*
* @param _m1 Contain points in the reference view. Depth CV_32F with 2-channel
* 1 column or 1-channel 2 columns. It has 7 rows.
* @param _m2 Contain points in the other view. Depth CV_32F with 2-channel
* 1 column or 1-channel 2 columns. It has 7 rows.
* @param _fmatrix Output fundamental matrix (or matrices) of type CV_64FC1.
* The user is responsible for allocating the memory before calling
* this function.
* @return Number of fundamental matrices. Valid values are 1, 2 or 3.
* - 1, row 0 to row 2 in _fmatrix is a valid fundamental matrix
* - 2, row 3 to row 5 in _fmatrix is a valid fundamental matrix
* - 3, row 6 to row 8 in _fmatrix is a valid fundamental matrix
*
* Note that the computed fundamental matrix is normalized, i.e.,
* the last element \f$F_{33}\f$ is 1.
*/
static int run7Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
2017-06-26 19:09:21 +08:00
double a[7*9], w[7], u[9*9], v[9*9], c[4], r[3] = {0};
double* f1, *f2;
double t0, t1, t2;
Mat A( 7, 9, CV_64F, a );
Mat U( 7, 9, CV_64F, u );
Mat Vt( 9, 9, CV_64F, v );
Mat W( 7, 1, CV_64F, w );
Mat coeffs( 1, 4, CV_64F, c );
Mat roots( 1, 3, CV_64F, r );
const Point2f* m1 = _m1.ptr<Point2f>();
const Point2f* m2 = _m2.ptr<Point2f>();
double* fmatrix = _fmatrix.ptr<double>();
int i, k, n;
// form a linear system: i-th row of A(=a) represents
// the equation: (m2[i], 1)'*F*(m1[i], 1) = 0
for( i = 0; i < 7; i++ )
{
double x0 = m1[i].x, y0 = m1[i].y;
double x1 = m2[i].x, y1 = m2[i].y;
a[i*9+0] = x1*x0;
a[i*9+1] = x1*y0;
a[i*9+2] = x1;
a[i*9+3] = y1*x0;
a[i*9+4] = y1*y0;
a[i*9+5] = y1;
a[i*9+6] = x0;
a[i*9+7] = y0;
a[i*9+8] = 1;
}
// A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so
// the solution is linear subspace of dimensionality 2.
// => use the last two singular vectors as a basis of the space
// (according to SVD properties)
SVDecomp( A, W, U, Vt, SVD::MODIFY_A + SVD::FULL_UV );
f1 = v + 7*9;
f2 = v + 8*9;
// f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary fundamental matrix,
// as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1),
// so f ~ lambda*f1 + (1 - lambda)*f2.
// use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda.
// it will be a cubic equation.
// find c - polynomial coefficients.
for( i = 0; i < 9; i++ )
f1[i] -= f2[i];
t0 = f2[4]*f2[8] - f2[5]*f2[7];
t1 = f2[3]*f2[8] - f2[5]*f2[6];
t2 = f2[3]*f2[7] - f2[4]*f2[6];
c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;
c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);
t0 = f1[4]*f1[8] - f1[5]*f1[7];
t1 = f1[3]*f1[8] - f1[5]*f1[6];
t2 = f1[3]*f1[7] - f1[4]*f1[6];
c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);
c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;
// solve the cubic equation; there can be 1 to 3 roots ...
n = solveCubic( coeffs, roots );
if( n < 1 || n > 3 )
return n;
for( k = 0; k < n; k++, fmatrix += 9 )
{
// for each root form the fundamental matrix
double lambda = r[k], mu = 1.;
double s = f1[8]*r[k] + f2[8];
// normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1
if( fabs(s) > DBL_EPSILON )
{
mu = 1./s;
lambda *= mu;
fmatrix[8] = 1.;
}
else
fmatrix[8] = 0.;
for( i = 0; i < 8; i++ )
fmatrix[i] = f1[i]*lambda + f2[i]*mu;
}
return n;
}
/**
* Compute the fundamental matrix using the 8-point algorithm.
*
* \f[
* (\mathrm{m2}_i,1)^T \mathrm{fmatrix} (\mathrm{m1}_i,1) = 0
* \f]
*
* @param _m1 Contain points in the reference view. Depth CV_32F with 2-channel
* 1 column or 1-channel 2 columns. It has 8 rows.
* @param _m2 Contain points in the other view. Depth CV_32F with 2-channel
* 1 column or 1-channel 2 columns. It has 8 rows.
* @param _fmatrix Output fundamental matrix (or matrices) of type CV_64FC1.
* The user is responsible for allocating the memory before calling
* this function.
* @return 1 on success, 0 on failure.
*
* Note that the computed fundamental matrix is normalized, i.e.,
* the last element \f$F_{33}\f$ is 1.
*/
static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
Point2d m1c(0,0), m2c(0,0);
double t, scale1 = 0, scale2 = 0;
const Point2f* m1 = _m1.ptr<Point2f>();
const Point2f* m2 = _m2.ptr<Point2f>();
CV_Assert( (_m1.cols == 1 || _m1.rows == 1) && _m1.size() == _m2.size());
int i, count = _m1.checkVector(2);
// compute centers and average distances for each of the two point sets
for( i = 0; i < count; i++ )
{
m1c += Point2d(m1[i]);
m2c += Point2d(m2[i]);
}
// calculate the normalizing transformations for each of the point sets:
// after the transformation each set will have the mass center at the coordinate origin
// and the average distance from the origin will be ~sqrt(2).
t = 1./count;
m1c *= t;
m2c *= t;
for( i = 0; i < count; i++ )
{
scale1 += norm(Point2d(m1[i].x - m1c.x, m1[i].y - m1c.y));
scale2 += norm(Point2d(m2[i].x - m2c.x, m2[i].y - m2c.y));
}
scale1 *= t;
scale2 *= t;
if( scale1 < FLT_EPSILON || scale2 < FLT_EPSILON )
return 0;
scale1 = std::sqrt(2.)/scale1;
scale2 = std::sqrt(2.)/scale2;
2012-10-17 15:12:04 +08:00
Matx<double, 9, 9> A;
// form a linear system Ax=0: for each selected pair of points m1 & m2,
// the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0
2012-10-17 15:12:04 +08:00
// to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0.
for( i = 0; i < count; i++ )
{
double x1 = (m1[i].x - m1c.x)*scale1;
double y1 = (m1[i].y - m1c.y)*scale1;
double x2 = (m2[i].x - m2c.x)*scale2;
double y2 = (m2[i].y - m2c.y)*scale2;
Vec<double, 9> r( x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1 );
A += r*r.t();
}
Vec<double, 9> W;
Matx<double, 9, 9> V;
eigen(A, W, V);
for( i = 0; i < 9; i++ )
{
if( fabs(W[i]) < DBL_EPSILON )
break;
}
if( i < 8 )
return 0;
Matx33d F0( V.val + 9*8 ); // take the last column of v as a solution of Af = 0
// make F0 singular (of rank 2) by decomposing it with SVD,
// zeroing the last diagonal element of W and then composing the matrices back.
Vec3d w;
Matx33d U;
Matx33d Vt;
SVD::compute( F0, w, U, Vt);
w[2] = 0.;
F0 = U*Matx33d::diag(w)*Vt;
// apply the transformation that is inverse
// to what we used to normalize the point coordinates
Matx33d T1( scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 );
Matx33d T2( scale2, 0, -scale2*m2c.x, 0, scale2, -scale2*m2c.y, 0, 0, 1 );
F0 = T2.t()*F0*T1;
// make F(3,3) = 1
if( fabs(F0(2,2)) > FLT_EPSILON )
F0 *= 1./F0(2,2);
Mat(F0).copyTo(_fmatrix);
return 1;
}
class FMEstimatorCallback : public PointSetRegistrator::Callback
{
public:
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
{
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
return !haveCollinearPoints(ms1, count) && !haveCollinearPoints(ms2, count);
}
2012-10-17 15:12:04 +08:00
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
double f[9*3];
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
int count = m1.checkVector(2);
Mat F(count == 7 ? 9 : 3, 3, CV_64F, f);
int n = count == 7 ? run7Point(m1, m2, F) : run8Point(m1, m2, F);
if( n == 0 )
_model.release();
else
F.rowRange(0, n*3).copyTo(_model);
return n;
}
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat __m1 = _m1.getMat(), __m2 = _m2.getMat(), __model = _model.getMat();
int i, count = __m1.checkVector(2);
const Point2f* m1 = __m1.ptr<Point2f>();
const Point2f* m2 = __m2.ptr<Point2f>();
const double* F = __model.ptr<double>();
_err.create(count, 1, CV_32F);
float* err = _err.getMat().ptr<float>();
for( i = 0; i < count; i++ )
{
double a, b, c, d1, d2, s1, s2;
a = F[0]*m1[i].x + F[1]*m1[i].y + F[2];
b = F[3]*m1[i].x + F[4]*m1[i].y + F[5];
c = F[6]*m1[i].x + F[7]*m1[i].y + F[8];
s2 = 1./(a*a + b*b);
d2 = m2[i].x*a + m2[i].y*b + c;
a = F[0]*m2[i].x + F[3]*m2[i].y + F[6];
b = F[1]*m2[i].x + F[4]*m2[i].y + F[7];
c = F[2]*m2[i].x + F[5]*m2[i].y + F[8];
s1 = 1./(a*a + b*b);
d1 = m1[i].x*a + m1[i].y*b + c;
err[i] = (float)std::max(d1*d1*s1, d2*d2*s2);
}
}
};
}
cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
int method, double ransacReprojThreshold, double confidence,
OutputArray _mask )
{
CV_INSTRUMENT_REGION()
Mat points1 = _points1.getMat(), points2 = _points2.getMat();
Mat m1, m2, F;
int npoints = -1;
for( int i = 1; i <= 2; i++ )
{
Mat& p = i == 1 ? points1 : points2;
Mat& m = i == 1 ? m1 : m2;
npoints = p.checkVector(2, -1, false);
if( npoints < 0 )
{
npoints = p.checkVector(3, -1, false);
if( npoints < 0 )
CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
if( npoints == 0 )
return Mat();
convertPointsFromHomogeneous(p, p);
}
p.reshape(2, npoints).convertTo(m, CV_32F);
}
CV_Assert( m1.checkVector(2) == m2.checkVector(2) );
if( npoints < 7 )
return Mat();
2013-08-13 21:03:56 +08:00
Ptr<PointSetRegistrator::Callback> cb = makePtr<FMEstimatorCallback>();
int result;
if( npoints == 7 || method == FM_8POINT )
{
result = cb->runKernel(m1, m2, F);
if( _mask.needed() )
{
_mask.create(npoints, 1, CV_8U, -1, true);
Mat mask = _mask.getMat();
CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == npoints );
mask.setTo(Scalar::all(1));
}
}
else
{
if( ransacReprojThreshold <= 0 )
ransacReprojThreshold = 3;
if( confidence < DBL_EPSILON || confidence > 1 - DBL_EPSILON )
confidence = 0.99;
2012-10-17 15:12:04 +08:00
if( (method & ~3) == FM_RANSAC && npoints >= 15 )
result = createRANSACPointSetRegistrator(cb, 7, ransacReprojThreshold, confidence)->run(m1, m2, F, _mask);
else
result = createLMeDSPointSetRegistrator(cb, 7, confidence)->run(m1, m2, F, _mask);
}
if( result <= 0 )
return Mat();
2012-10-17 15:12:04 +08:00
return F;
}
cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
OutputArray _mask, int method,
double ransacReprojThreshold , double confidence)
{
return cv::findFundamentalMat(_points1, _points2, method, ransacReprojThreshold, confidence, _mask);
}
void cv::computeCorrespondEpilines( InputArray _points, int whichImage,
InputArray _Fmat, OutputArray _lines )
{
CV_INSTRUMENT_REGION()
2017-06-26 19:09:21 +08:00
double f[9] = {0};
Mat tempF(3, 3, CV_64F, f);
Mat points = _points.getMat(), F = _Fmat.getMat();
if( !points.isContinuous() )
points = points.clone();
int npoints = points.checkVector(2);
if( npoints < 0 )
{
npoints = points.checkVector(3);
if( npoints < 0 )
CV_Error( Error::StsBadArg, "The input should be a 2D or 3D point set");
Mat temp;
convertPointsFromHomogeneous(points, temp);
points = temp;
}
int depth = points.depth();
CV_Assert( depth == CV_32F || depth == CV_32S || depth == CV_64F );
CV_Assert(F.size() == Size(3,3));
F.convertTo(tempF, CV_64F);
if( whichImage == 2 )
transpose(tempF, tempF);
int ltype = CV_MAKETYPE(MAX(depth, CV_32F), 3);
_lines.create(npoints, 1, ltype);
Mat lines = _lines.getMat();
if( !lines.isContinuous() )
{
_lines.release();
_lines.create(npoints, 1, ltype);
lines = _lines.getMat();
}
CV_Assert( lines.isContinuous());
if( depth == CV_32S || depth == CV_32F )
{
const Point* ptsi = points.ptr<Point>();
const Point2f* ptsf = points.ptr<Point2f>();
Point3f* dstf = lines.ptr<Point3f>();
for( int i = 0; i < npoints; i++ )
{
Point2f pt = depth == CV_32F ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
double a = f[0]*pt.x + f[1]*pt.y + f[2];
double b = f[3]*pt.x + f[4]*pt.y + f[5];
double c = f[6]*pt.x + f[7]*pt.y + f[8];
double nu = a*a + b*b;
nu = nu ? 1./std::sqrt(nu) : 1.;
a *= nu; b *= nu; c *= nu;
dstf[i] = Point3f((float)a, (float)b, (float)c);
}
}
else
{
const Point2d* ptsd = points.ptr<Point2d>();
Point3d* dstd = lines.ptr<Point3d>();
for( int i = 0; i < npoints; i++ )
{
Point2d pt = ptsd[i];
double a = f[0]*pt.x + f[1]*pt.y + f[2];
double b = f[3]*pt.x + f[4]*pt.y + f[5];
double c = f[6]*pt.x + f[7]*pt.y + f[8];
double nu = a*a + b*b;
nu = nu ? 1./std::sqrt(nu) : 1.;
a *= nu; b *= nu; c *= nu;
dstd[i] = Point3d(a, b, c);
}
}
}
void cv::convertPointsFromHomogeneous( InputArray _src, OutputArray _dst )
{
CV_INSTRUMENT_REGION()
Mat src = _src.getMat();
if( !src.isContinuous() )
src = src.clone();
int i, npoints = src.checkVector(3), depth = src.depth(), cn = 3;
if( npoints < 0 )
{
npoints = src.checkVector(4);
CV_Assert(npoints >= 0);
cn = 4;
}
CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));
int dtype = CV_MAKETYPE(depth <= CV_32F ? CV_32F : CV_64F, cn-1);
_dst.create(npoints, 1, dtype);
Mat dst = _dst.getMat();
if( !dst.isContinuous() )
{
_dst.release();
_dst.create(npoints, 1, dtype);
dst = _dst.getMat();
}
CV_Assert( dst.isContinuous() );
if( depth == CV_32S )
{
if( cn == 3 )
{
const Point3i* sptr = src.ptr<Point3i>();
Point2f* dptr = dst.ptr<Point2f>();
for( i = 0; i < npoints; i++ )
{
float scale = sptr[i].z != 0 ? 1.f/sptr[i].z : 1.f;
dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
}
}
else
{
const Vec4i* sptr = src.ptr<Vec4i>();
Point3f* dptr = dst.ptr<Point3f>();
for( i = 0; i < npoints; i++ )
{
float scale = sptr[i][3] != 0 ? 1.f/sptr[i][3] : 1.f;
dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
}
}
}
else if( depth == CV_32F )
{
if( cn == 3 )
{
const Point3f* sptr = src.ptr<Point3f>();
Point2f* dptr = dst.ptr<Point2f>();
for( i = 0; i < npoints; i++ )
{
float scale = sptr[i].z != 0.f ? 1.f/sptr[i].z : 1.f;
dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
}
}
else
{
const Vec4f* sptr = src.ptr<Vec4f>();
Point3f* dptr = dst.ptr<Point3f>();
for( i = 0; i < npoints; i++ )
{
float scale = sptr[i][3] != 0.f ? 1.f/sptr[i][3] : 1.f;
dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
}
}
}
else if( depth == CV_64F )
{
if( cn == 3 )
{
const Point3d* sptr = src.ptr<Point3d>();
Point2d* dptr = dst.ptr<Point2d>();
for( i = 0; i < npoints; i++ )
{
double scale = sptr[i].z != 0. ? 1./sptr[i].z : 1.;
dptr[i] = Point2d(sptr[i].x*scale, sptr[i].y*scale);
}
}
else
{
const Vec4d* sptr = src.ptr<Vec4d>();
Point3d* dptr = dst.ptr<Point3d>();
for( i = 0; i < npoints; i++ )
{
double scale = sptr[i][3] != 0.f ? 1./sptr[i][3] : 1.;
dptr[i] = Point3d(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
}
}
}
else
CV_Error(Error::StsUnsupportedFormat, "");
}
void cv::convertPointsToHomogeneous( InputArray _src, OutputArray _dst )
{
CV_INSTRUMENT_REGION()
Mat src = _src.getMat();
if( !src.isContinuous() )
src = src.clone();
int i, npoints = src.checkVector(2), depth = src.depth(), cn = 2;
if( npoints < 0 )
{
npoints = src.checkVector(3);
CV_Assert(npoints >= 0);
cn = 3;
}
CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));
int dtype = CV_MAKETYPE(depth, cn+1);
_dst.create(npoints, 1, dtype);
Mat dst = _dst.getMat();
if( !dst.isContinuous() )
{
_dst.release();
_dst.create(npoints, 1, dtype);
dst = _dst.getMat();
}
CV_Assert( dst.isContinuous() );
if( depth == CV_32S )
{
if( cn == 2 )
{
const Point2i* sptr = src.ptr<Point2i>();
Point3i* dptr = dst.ptr<Point3i>();
for( i = 0; i < npoints; i++ )
dptr[i] = Point3i(sptr[i].x, sptr[i].y, 1);
}
else
{
const Point3i* sptr = src.ptr<Point3i>();
Vec4i* dptr = dst.ptr<Vec4i>();
for( i = 0; i < npoints; i++ )
dptr[i] = Vec4i(sptr[i].x, sptr[i].y, sptr[i].z, 1);
}
}
else if( depth == CV_32F )
{
if( cn == 2 )
{
const Point2f* sptr = src.ptr<Point2f>();
Point3f* dptr = dst.ptr<Point3f>();
for( i = 0; i < npoints; i++ )
dptr[i] = Point3f(sptr[i].x, sptr[i].y, 1.f);
}
else
{
const Point3f* sptr = src.ptr<Point3f>();
Vec4f* dptr = dst.ptr<Vec4f>();
for( i = 0; i < npoints; i++ )
dptr[i] = Vec4f(sptr[i].x, sptr[i].y, sptr[i].z, 1.f);
}
}
else if( depth == CV_64F )
{
if( cn == 2 )
{
const Point2d* sptr = src.ptr<Point2d>();
Point3d* dptr = dst.ptr<Point3d>();
for( i = 0; i < npoints; i++ )
dptr[i] = Point3d(sptr[i].x, sptr[i].y, 1.);
}
else
{
const Point3d* sptr = src.ptr<Point3d>();
Vec4d* dptr = dst.ptr<Vec4d>();
for( i = 0; i < npoints; i++ )
dptr[i] = Vec4d(sptr[i].x, sptr[i].y, sptr[i].z, 1.);
}
}
else
CV_Error(Error::StsUnsupportedFormat, "");
}
void cv::convertPointsHomogeneous( InputArray _src, OutputArray _dst )
{
CV_INSTRUMENT_REGION()
int stype = _src.type(), dtype = _dst.type();
CV_Assert( _dst.fixedType() );
2012-10-17 15:12:04 +08:00
if( CV_MAT_CN(stype) > CV_MAT_CN(dtype) )
convertPointsFromHomogeneous(_src, _dst);
else
convertPointsToHomogeneous(_src, _dst);
}
double cv::sampsonDistance(InputArray _pt1, InputArray _pt2, InputArray _F)
{
CV_INSTRUMENT_REGION()
CV_Assert(_pt1.type() == CV_64F && _pt2.type() == CV_64F && _F.type() == CV_64F);
CV_DbgAssert(_pt1.rows() == 3 && _F.size() == Size(3, 3) && _pt1.rows() == _pt2.rows());
Mat pt1(_pt1.getMat());
Mat pt2(_pt2.getMat());
Mat F(_F.getMat());
Vec3d F_pt1 = *F.ptr<Matx33d>() * *pt1.ptr<Vec3d>();
Vec3d Ft_pt2 = F.ptr<Matx33d>()->t() * *pt2.ptr<Vec3d>();
double v = pt2.ptr<Vec3d>()->dot(F_pt1);
// square
Ft_pt2 = Ft_pt2.mul(Ft_pt2);
F_pt1 = F_pt1.mul(F_pt1);
return v*v / (F_pt1[0] + F_pt1[1] + Ft_pt2[0] + Ft_pt2[1]);
}
/* End of file. */