2015-09-09 23:54:42 +08:00
|
|
|
#include "Thrust_interop.hpp"
|
2015-09-16 00:17:30 +08:00
|
|
|
#include <opencv2/core/cuda_stream_accessor.hpp>
|
2015-09-09 23:54:42 +08:00
|
|
|
|
|
|
|
#include <thrust/transform.h>
|
|
|
|
#include <thrust/random.h>
|
|
|
|
#include <thrust/sort.h>
|
2015-09-16 00:17:30 +08:00
|
|
|
#include <thrust/system/cuda/execution_policy.h>
|
2015-09-09 23:54:42 +08:00
|
|
|
struct prg
|
|
|
|
{
|
|
|
|
float a, b;
|
2015-09-16 00:17:30 +08:00
|
|
|
|
2015-09-09 23:54:42 +08:00
|
|
|
__host__ __device__
|
|
|
|
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {};
|
|
|
|
|
|
|
|
__host__ __device__
|
|
|
|
float operator()(const unsigned int n) const
|
|
|
|
{
|
|
|
|
thrust::default_random_engine rng;
|
|
|
|
thrust::uniform_real_distribution<float> dist(a, b);
|
|
|
|
rng.discard(n);
|
|
|
|
|
|
|
|
return dist(rng);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename T> struct pred_eq
|
|
|
|
{
|
|
|
|
T value;
|
|
|
|
int channel;
|
|
|
|
__host__ __device__
|
|
|
|
pred_eq(T value_, int channel_ = 0) :value(value_), channel(channel_){}
|
|
|
|
__host__ __device__
|
|
|
|
bool operator()(const T val) const
|
|
|
|
{
|
|
|
|
return val == value;
|
|
|
|
}
|
|
|
|
template<int N>
|
|
|
|
__host__ __device__ bool operator()(const cv::Vec<T, N>& val)
|
|
|
|
{
|
|
|
|
if (channel < N)
|
|
|
|
return val.val[channel] == value;
|
|
|
|
return false;
|
|
|
|
}
|
2015-09-16 00:17:30 +08:00
|
|
|
|
|
|
|
__host__ __device__ bool operator()( const thrust::tuple<T, T, T>& val)
|
|
|
|
{
|
|
|
|
if (channel == 0)
|
|
|
|
return thrust::get<0>(val) == value;
|
|
|
|
if (channel == 1)
|
|
|
|
return thrust::get<1>(val) == value;
|
|
|
|
if (channel == 2)
|
|
|
|
return thrust::get<2>(val) == value;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
template<typename T> struct pred_greater
|
|
|
|
{
|
|
|
|
T value;
|
|
|
|
__host__ __device__ pred_greater(T value_) : value(value_){}
|
|
|
|
__host__ __device__ bool operator()(const T& val) const
|
|
|
|
{
|
|
|
|
return val > value;
|
|
|
|
}
|
2015-09-09 23:54:42 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int main(void)
|
|
|
|
{
|
|
|
|
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly
|
|
|
|
// generated value. Sort by the randomly generated value while maintaining index association.
|
|
|
|
{
|
|
|
|
cv::cuda::GpuMat d_idx(1, 100, CV_32SC2);
|
|
|
|
|
|
|
|
auto keyBegin = GpuMatBeginItr<int>(d_idx, 1);
|
|
|
|
auto keyEnd = GpuMatEndItr<int>(d_idx, 1);
|
|
|
|
|
|
|
|
auto idxBegin = GpuMatBeginItr<int>(d_idx, 0);
|
|
|
|
auto idxEnd = GpuMatEndItr<int>(d_idx, 0);
|
|
|
|
|
|
|
|
thrust::sequence(idxBegin, idxEnd);
|
|
|
|
thrust::transform(idxBegin, idxEnd, keyBegin, prg(0, 10));
|
|
|
|
thrust::sort_by_key(keyBegin, keyEnd, idxBegin);
|
|
|
|
|
|
|
|
cv::Mat h_idx(d_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Randomly fill a row matrix with 100 elements between -1 and 1
|
|
|
|
{
|
|
|
|
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
|
|
|
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
|
|
|
auto valueEnd = GpuMatEndItr<float>(d_value);
|
|
|
|
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
|
|
|
|
|
|
|
cv::Mat h_value(d_value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// OpenCV has count non zero, but what if you want to count a specific value?
|
|
|
|
{
|
|
|
|
cv::cuda::GpuMat d_value(1, 100, CV_32S);
|
|
|
|
d_value.setTo(cv::Scalar(0));
|
|
|
|
d_value.colRange(10, 50).setTo(cv::Scalar(15));
|
|
|
|
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15);
|
|
|
|
std::cout << count << std::endl;
|
|
|
|
}
|
2015-09-16 00:17:30 +08:00
|
|
|
// Randomly fill an array then copy only values greater than 0. Perform these tasks on a stream.
|
|
|
|
{
|
|
|
|
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
|
|
|
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
|
|
|
auto valueEnd = GpuMatEndItr<float>(d_value);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
thrust::transform(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
|
|
|
int count = thrust::count_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, pred_greater<float>(0.0));
|
|
|
|
cv::cuda::GpuMat d_valueGreater(1, count, CV_32F);
|
|
|
|
thrust::copy_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, GpuMatBeginItr<float>(d_valueGreater), pred_greater<float>(0.0));
|
|
|
|
cv::Mat h_greater(d_valueGreater);
|
|
|
|
}
|
2015-09-09 23:54:42 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|