mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
247 lines
6.6 KiB
C
247 lines
6.6 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Table of constant values */
|
||
|
|
||
|
static integer c__1 = 1;
|
||
|
static integer c_n1 = -1;
|
||
|
static integer c__2 = 2;
|
||
|
static real c_b20 = -1.f;
|
||
|
static real c_b22 = 1.f;
|
||
|
|
||
|
/* Subroutine */ int sgetri_(integer *n, real *a, integer *lda, integer *ipiv,
|
||
|
real *work, integer *lwork, integer *info)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
||
|
|
||
|
/* Local variables */
|
||
|
integer i__, j, jb, nb, jj, jp, nn, iws, nbmin;
|
||
|
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
|
||
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
||
|
real *, integer *), sgemv_(char *, integer *,
|
||
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
||
|
real *, integer *), sswap_(integer *, real *, integer *,
|
||
|
real *, integer *), strsm_(char *, char *, char *, char *,
|
||
|
integer *, integer *, real *, real *, integer *, real *, integer *
|
||
|
), xerbla_(char *, integer *);
|
||
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
||
|
integer *, integer *);
|
||
|
integer ldwork, lwkopt;
|
||
|
logical lquery;
|
||
|
extern /* Subroutine */ int strtri_(char *, char *, integer *, real *,
|
||
|
integer *, integer *);
|
||
|
|
||
|
|
||
|
/* -- LAPACK routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* SGETRI computes the inverse of a matrix using the LU factorization */
|
||
|
/* computed by SGETRF. */
|
||
|
|
||
|
/* This method inverts U and then computes inv(A) by solving the system */
|
||
|
/* inv(A)*L = inv(U) for inv(A). */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The order of the matrix A. N >= 0. */
|
||
|
|
||
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
||
|
/* On entry, the factors L and U from the factorization */
|
||
|
/* A = P*L*U as computed by SGETRF. */
|
||
|
/* On exit, if INFO = 0, the inverse of the original matrix A. */
|
||
|
|
||
|
/* LDA (input) INTEGER */
|
||
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
||
|
|
||
|
/* IPIV (input) INTEGER array, dimension (N) */
|
||
|
/* The pivot indices from SGETRF; for 1<=i<=N, row i of the */
|
||
|
/* matrix was interchanged with row IPIV(i). */
|
||
|
|
||
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
|
||
|
/* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */
|
||
|
|
||
|
/* LWORK (input) INTEGER */
|
||
|
/* The dimension of the array WORK. LWORK >= max(1,N). */
|
||
|
/* For optimal performance LWORK >= N*NB, where NB is */
|
||
|
/* the optimal blocksize returned by ILAENV. */
|
||
|
|
||
|
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
||
|
/* only calculates the optimal size of the WORK array, returns */
|
||
|
/* this value as the first entry of the WORK array, and no error */
|
||
|
/* message related to LWORK is issued by XERBLA. */
|
||
|
|
||
|
/* INFO (output) INTEGER */
|
||
|
/* = 0: successful exit */
|
||
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
||
|
/* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is */
|
||
|
/* singular and its inverse could not be computed. */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. External Subroutines .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Test the input parameters. */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
a_dim1 = *lda;
|
||
|
a_offset = 1 + a_dim1;
|
||
|
a -= a_offset;
|
||
|
--ipiv;
|
||
|
--work;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
nb = ilaenv_(&c__1, "SGETRI", " ", n, &c_n1, &c_n1, &c_n1);
|
||
|
lwkopt = *n * nb;
|
||
|
work[1] = (real) lwkopt;
|
||
|
lquery = *lwork == -1;
|
||
|
if (*n < 0) {
|
||
|
*info = -1;
|
||
|
} else if (*lda < max(1,*n)) {
|
||
|
*info = -3;
|
||
|
} else if (*lwork < max(1,*n) && ! lquery) {
|
||
|
*info = -6;
|
||
|
}
|
||
|
if (*info != 0) {
|
||
|
i__1 = -(*info);
|
||
|
xerbla_("SGETRI", &i__1);
|
||
|
return 0;
|
||
|
} else if (lquery) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Quick return if possible */
|
||
|
|
||
|
if (*n == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Form inv(U). If INFO > 0 from STRTRI, then U is singular, */
|
||
|
/* and the inverse is not computed. */
|
||
|
|
||
|
strtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
|
||
|
if (*info > 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
nbmin = 2;
|
||
|
ldwork = *n;
|
||
|
if (nb > 1 && nb < *n) {
|
||
|
/* Computing MAX */
|
||
|
i__1 = ldwork * nb;
|
||
|
iws = max(i__1,1);
|
||
|
if (*lwork < iws) {
|
||
|
nb = *lwork / ldwork;
|
||
|
/* Computing MAX */
|
||
|
i__1 = 2, i__2 = ilaenv_(&c__2, "SGETRI", " ", n, &c_n1, &c_n1, &
|
||
|
c_n1);
|
||
|
nbmin = max(i__1,i__2);
|
||
|
}
|
||
|
} else {
|
||
|
iws = *n;
|
||
|
}
|
||
|
|
||
|
/* Solve the equation inv(A)*L = inv(U) for inv(A). */
|
||
|
|
||
|
if (nb < nbmin || nb >= *n) {
|
||
|
|
||
|
/* Use unblocked code. */
|
||
|
|
||
|
for (j = *n; j >= 1; --j) {
|
||
|
|
||
|
/* Copy current column of L to WORK and replace with zeros. */
|
||
|
|
||
|
i__1 = *n;
|
||
|
for (i__ = j + 1; i__ <= i__1; ++i__) {
|
||
|
work[i__] = a[i__ + j * a_dim1];
|
||
|
a[i__ + j * a_dim1] = 0.f;
|
||
|
/* L10: */
|
||
|
}
|
||
|
|
||
|
/* Compute current column of inv(A). */
|
||
|
|
||
|
if (j < *n) {
|
||
|
i__1 = *n - j;
|
||
|
sgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1
|
||
|
+ 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1
|
||
|
+ 1], &c__1);
|
||
|
}
|
||
|
/* L20: */
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* Use blocked code. */
|
||
|
|
||
|
nn = (*n - 1) / nb * nb + 1;
|
||
|
i__1 = -nb;
|
||
|
for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
|
||
|
/* Computing MIN */
|
||
|
i__2 = nb, i__3 = *n - j + 1;
|
||
|
jb = min(i__2,i__3);
|
||
|
|
||
|
/* Copy current block column of L to WORK and replace with */
|
||
|
/* zeros. */
|
||
|
|
||
|
i__2 = j + jb - 1;
|
||
|
for (jj = j; jj <= i__2; ++jj) {
|
||
|
i__3 = *n;
|
||
|
for (i__ = jj + 1; i__ <= i__3; ++i__) {
|
||
|
work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
|
||
|
a[i__ + jj * a_dim1] = 0.f;
|
||
|
/* L30: */
|
||
|
}
|
||
|
/* L40: */
|
||
|
}
|
||
|
|
||
|
/* Compute current block column of inv(A). */
|
||
|
|
||
|
if (j + jb <= *n) {
|
||
|
i__2 = *n - j - jb + 1;
|
||
|
sgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20,
|
||
|
&a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
|
||
|
ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
|
||
|
}
|
||
|
strsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
|
||
|
work[j], &ldwork, &a[j * a_dim1 + 1], lda);
|
||
|
/* L50: */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Apply column interchanges. */
|
||
|
|
||
|
for (j = *n - 1; j >= 1; --j) {
|
||
|
jp = ipiv[j];
|
||
|
if (jp != j) {
|
||
|
sswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
|
||
|
}
|
||
|
/* L60: */
|
||
|
}
|
||
|
|
||
|
work[1] = (real) iws;
|
||
|
return 0;
|
||
|
|
||
|
/* End of SGETRI */
|
||
|
|
||
|
} /* sgetri_ */
|