opencv/3rdparty/lapack/slarrd.c

772 lines
24 KiB
C
Raw Normal View History

#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__0 = 0;
/* Subroutine */ int slarrd_(char *range, char *order, integer *n, real *vl,
real *vu, integer *il, integer *iu, real *gers, real *reltol, real *
d__, real *e, real *e2, real *pivmin, integer *nsplit, integer *
isplit, integer *m, real *w, real *werr, real *wl, real *wu, integer *
iblock, integer *indexw, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer i__1, i__2, i__3;
real r__1, r__2;
/* Builtin functions */
double log(doublereal);
/* Local variables */
integer i__, j, ib, ie, je, nb;
real gl;
integer im, in;
real gu;
integer iw, jee;
real eps;
integer nwl;
real wlu, wul;
integer nwu;
real tmp1, tmp2;
integer iend, jblk, ioff, iout, itmp1, itmp2, jdisc;
extern logical lsame_(char *, char *);
integer iinfo;
real atoli;
integer iwoff, itmax;
real wkill, rtoli, uflow, tnorm;
integer ibegin, irange, idiscl;
extern doublereal slamch_(char *);
integer idumma[1];
real spdiam;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer idiscu;
extern /* Subroutine */ int slaebz_(integer *, integer *, integer *,
integer *, integer *, integer *, real *, real *, real *, real *,
real *, real *, integer *, real *, real *, integer *, integer *,
real *, integer *, integer *);
logical ncnvrg, toofew;
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLARRD computes the eigenvalues of a symmetric tridiagonal */
/* matrix T to suitable accuracy. This is an auxiliary code to be */
/* called from SSTEMR. */
/* The user may ask for all eigenvalues, all eigenvalues */
/* in the half-open interval (VL, VU], or the IL-th through IU-th */
/* eigenvalues. */
/* To avoid overflow, the matrix must be scaled so that its */
/* largest element is no greater than overflow**(1/2) * */
/* underflow**(1/4) in absolute value, and for greatest */
/* accuracy, it should not be much smaller than that. */
/* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
/* Matrix", Report CS41, Computer Science Dept., Stanford */
/* University, July 21, 1966. */
/* Arguments */
/* ========= */
/* RANGE (input) CHARACTER */
/* = 'A': ("All") all eigenvalues will be found. */
/* = 'V': ("Value") all eigenvalues in the half-open interval */
/* (VL, VU] will be found. */
/* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
/* entire matrix) will be found. */
/* ORDER (input) CHARACTER */
/* = 'B': ("By Block") the eigenvalues will be grouped by */
/* split-off block (see IBLOCK, ISPLIT) and */
/* ordered from smallest to largest within */
/* the block. */
/* = 'E': ("Entire matrix") */
/* the eigenvalues for the entire matrix */
/* will be ordered from smallest to */
/* largest. */
/* N (input) INTEGER */
/* The order of the tridiagonal matrix T. N >= 0. */
/* VL (input) REAL */
/* VU (input) REAL */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. Eigenvalues less than or equal */
/* to VL, or greater than VU, will not be returned. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* GERS (input) REAL array, dimension (2*N) */
/* The N Gerschgorin intervals (the i-th Gerschgorin interval */
/* is (GERS(2*i-1), GERS(2*i)). */
/* RELTOL (input) REAL */
/* The minimum relative width of an interval. When an interval */
/* is narrower than RELTOL times the larger (in */
/* magnitude) endpoint, then it is considered to be */
/* sufficiently small, i.e., converged. Note: this should */
/* always be at least radix*machine epsilon. */
/* D (input) REAL array, dimension (N) */
/* The n diagonal elements of the tridiagonal matrix T. */
/* E (input) REAL array, dimension (N-1) */
/* The (n-1) off-diagonal elements of the tridiagonal matrix T. */
/* E2 (input) REAL array, dimension (N-1) */
/* The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */
/* PIVMIN (input) REAL */
/* The minimum pivot allowed in the Sturm sequence for T. */
/* NSPLIT (input) INTEGER */
/* The number of diagonal blocks in the matrix T. */
/* 1 <= NSPLIT <= N. */
/* ISPLIT (input) INTEGER array, dimension (N) */
/* The splitting points, at which T breaks up into submatrices. */
/* The first submatrix consists of rows/columns 1 to ISPLIT(1), */
/* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
/* etc., and the NSPLIT-th consists of rows/columns */
/* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
/* (Only the first NSPLIT elements will actually be used, but */
/* since the user cannot know a priori what value NSPLIT will */
/* have, N words must be reserved for ISPLIT.) */
/* M (output) INTEGER */
/* The actual number of eigenvalues found. 0 <= M <= N. */
/* (See also the description of INFO=2,3.) */
/* W (output) REAL array, dimension (N) */
/* On exit, the first M elements of W will contain the */
/* eigenvalue approximations. SLARRD computes an interval */
/* I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue */
/* approximation is given as the interval midpoint */
/* W(j)= ( a_j + b_j)/2. The corresponding error is bounded by */
/* WERR(j) = abs( a_j - b_j)/2 */
/* WERR (output) REAL array, dimension (N) */
/* The error bound on the corresponding eigenvalue approximation */
/* in W. */
/* WL (output) REAL */
/* WU (output) REAL */
/* The interval (WL, WU] contains all the wanted eigenvalues. */
/* If RANGE='V', then WL=VL and WU=VU. */
/* If RANGE='A', then WL and WU are the global Gerschgorin bounds */
/* on the spectrum. */
/* If RANGE='I', then WL and WU are computed by SLAEBZ from the */
/* index range specified. */
/* IBLOCK (output) INTEGER array, dimension (N) */
/* At each row/column j where E(j) is zero or small, the */
/* matrix T is considered to split into a block diagonal */
/* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which */
/* block (from 1 to the number of blocks) the eigenvalue W(i) */
/* belongs. (SLARRD may use the remaining N-M elements as */
/* workspace.) */
/* INDEXW (output) INTEGER array, dimension (N) */
/* The indices of the eigenvalues within each block (submatrix); */
/* for example, INDEXW(i)= j and IBLOCK(i)=k imply that the */
/* i-th eigenvalue W(i) is the j-th eigenvalue in block k. */
/* WORK (workspace) REAL array, dimension (4*N) */
/* IWORK (workspace) INTEGER array, dimension (3*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: some or all of the eigenvalues failed to converge or */
/* were not computed: */
/* =1 or 3: Bisection failed to converge for some */
/* eigenvalues; these eigenvalues are flagged by a */
/* negative block number. The effect is that the */
/* eigenvalues may not be as accurate as the */
/* absolute and relative tolerances. This is */
/* generally caused by unexpectedly inaccurate */
/* arithmetic. */
/* =2 or 3: RANGE='I' only: Not all of the eigenvalues */
/* IL:IU were found. */
/* Effect: M < IU+1-IL */
/* Cause: non-monotonic arithmetic, causing the */
/* Sturm sequence to be non-monotonic. */
/* Cure: recalculate, using RANGE='A', and pick */
/* out eigenvalues IL:IU. In some cases, */
/* increasing the PARAMETER "FUDGE" may */
/* make things work. */
/* = 4: RANGE='I', and the Gershgorin interval */
/* initially used was too small. No eigenvalues */
/* were computed. */
/* Probable cause: your machine has sloppy */
/* floating-point arithmetic. */
/* Cure: Increase the PARAMETER "FUDGE", */
/* recompile, and try again. */
/* Internal Parameters */
/* =================== */
/* FUDGE REAL , default = 2 */
/* A "fudge factor" to widen the Gershgorin intervals. Ideally, */
/* a value of 1 should work, but on machines with sloppy */
/* arithmetic, this needs to be larger. The default for */
/* publicly released versions should be large enough to handle */
/* the worst machine around. Note that this has no effect */
/* on accuracy of the solution. */
/* Based on contributions by */
/* W. Kahan, University of California, Berkeley, USA */
/* Beresford Parlett, University of California, Berkeley, USA */
/* Jim Demmel, University of California, Berkeley, USA */
/* Inderjit Dhillon, University of Texas, Austin, USA */
/* Osni Marques, LBNL/NERSC, USA */
/* Christof Voemel, University of California, Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--iwork;
--work;
--indexw;
--iblock;
--werr;
--w;
--isplit;
--e2;
--e;
--d__;
--gers;
/* Function Body */
*info = 0;
/* Decode RANGE */
if (lsame_(range, "A")) {
irange = 1;
} else if (lsame_(range, "V")) {
irange = 2;
} else if (lsame_(range, "I")) {
irange = 3;
} else {
irange = 0;
}
/* Check for Errors */
if (irange <= 0) {
*info = -1;
} else if (! (lsame_(order, "B") || lsame_(order,
"E"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (irange == 2) {
if (*vl >= *vu) {
*info = -5;
}
} else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
*info = -6;
} else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
*info = -7;
}
if (*info != 0) {
return 0;
}
/* Initialize error flags */
*info = 0;
ncnvrg = FALSE_;
toofew = FALSE_;
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return 0;
}
/* Simplification: */
if (irange == 3 && *il == 1 && *iu == *n) {
irange = 1;
}
/* Get machine constants */
eps = slamch_("P");
uflow = slamch_("U");
/* Special Case when N=1 */
/* Treat case of 1x1 matrix for quick return */
if (*n == 1) {
if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu ||
irange == 3 && *il == 1 && *iu == 1) {
*m = 1;
w[1] = d__[1];
/* The computation error of the eigenvalue is zero */
werr[1] = 0.f;
iblock[1] = 1;
indexw[1] = 1;
}
return 0;
}
/* NB is the minimum vector length for vector bisection, or 0 */
/* if only scalar is to be done. */
nb = ilaenv_(&c__1, "SSTEBZ", " ", n, &c_n1, &c_n1, &c_n1);
if (nb <= 1) {
nb = 0;
}
/* Find global spectral radius */
gl = d__[1];
gu = d__[1];
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MIN */
r__1 = gl, r__2 = gers[(i__ << 1) - 1];
gl = dmin(r__1,r__2);
/* Computing MAX */
r__1 = gu, r__2 = gers[i__ * 2];
gu = dmax(r__1,r__2);
/* L5: */
}
/* Compute global Gerschgorin bounds and spectral diameter */
/* Computing MAX */
r__1 = dabs(gl), r__2 = dabs(gu);
tnorm = dmax(r__1,r__2);
gl = gl - tnorm * 2.f * eps * *n - *pivmin * 4.f;
gu = gu + tnorm * 2.f * eps * *n + *pivmin * 4.f;
spdiam = gu - gl;
/* Input arguments for SLAEBZ: */
/* The relative tolerance. An interval (a,b] lies within */
/* "relative tolerance" if b-a < RELTOL*max(|a|,|b|), */
rtoli = *reltol;
/* Set the absolute tolerance for interval convergence to zero to force */
/* interval convergence based on relative size of the interval. */
/* This is dangerous because intervals might not converge when RELTOL is */
/* small. But at least a very small number should be selected so that for */
/* strongly graded matrices, the code can get relatively accurate */
/* eigenvalues. */
atoli = uflow * 4.f + *pivmin * 4.f;
if (irange == 3) {
/* RANGE='I': Compute an interval containing eigenvalues */
/* IL through IU. The initial interval [GL,GU] from the global */
/* Gerschgorin bounds GL and GU is refined by SLAEBZ. */
itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.f))
+ 2;
work[*n + 1] = gl;
work[*n + 2] = gl;
work[*n + 3] = gu;
work[*n + 4] = gu;
work[*n + 5] = gl;
work[*n + 6] = gu;
iwork[1] = -1;
iwork[2] = -1;
iwork[3] = *n + 1;
iwork[4] = *n + 1;
iwork[5] = *il - 1;
iwork[6] = *iu;
slaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, &
d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5]
, &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
if (iinfo != 0) {
*info = iinfo;
return 0;
}
/* On exit, output intervals may not be ordered by ascending negcount */
if (iwork[6] == *iu) {
*wl = work[*n + 1];
wlu = work[*n + 3];
nwl = iwork[1];
*wu = work[*n + 4];
wul = work[*n + 2];
nwu = iwork[4];
} else {
*wl = work[*n + 2];
wlu = work[*n + 4];
nwl = iwork[2];
*wu = work[*n + 3];
wul = work[*n + 1];
nwu = iwork[3];
}
/* On exit, the interval [WL, WLU] contains a value with negcount NWL, */
/* and [WUL, WU] contains a value with negcount NWU. */
if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
*info = 4;
return 0;
}
} else if (irange == 2) {
*wl = *vl;
*wu = *vu;
} else if (irange == 1) {
*wl = gl;
*wu = gu;
}
/* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. */
/* NWL accumulates the number of eigenvalues .le. WL, */
/* NWU accumulates the number of eigenvalues .le. WU */
*m = 0;
iend = 0;
*info = 0;
nwl = 0;
nwu = 0;
i__1 = *nsplit;
for (jblk = 1; jblk <= i__1; ++jblk) {
ioff = iend;
ibegin = ioff + 1;
iend = isplit[jblk];
in = iend - ioff;
if (in == 1) {
/* 1x1 block */
if (*wl >= d__[ibegin] - *pivmin) {
++nwl;
}
if (*wu >= d__[ibegin] - *pivmin) {
++nwu;
}
if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[
ibegin] - *pivmin) {
++(*m);
w[*m] = d__[ibegin];
werr[*m] = 0.f;
/* The gap for a single block doesn't matter for the later */
/* algorithm and is assigned an arbitrary large value */
iblock[*m] = jblk;
indexw[*m] = 1;
}
/* Disabled 2x2 case because of a failure on the following matrix */
/* RANGE = 'I', IL = IU = 4 */
/* Original Tridiagonal, d = [ */
/* -0.150102010615740E+00 */
/* -0.849897989384260E+00 */
/* -0.128208148052635E-15 */
/* 0.128257718286320E-15 */
/* ]; */
/* e = [ */
/* -0.357171383266986E+00 */
/* -0.180411241501588E-15 */
/* -0.175152352710251E-15 */
/* ]; */
/* ELSE IF( IN.EQ.2 ) THEN */
/* * 2x2 block */
/* DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) */
/* TMP1 = HALF*(D(IBEGIN)+D(IEND)) */
/* L1 = TMP1 - DISC */
/* IF( WL.GE. L1-PIVMIN ) */
/* $ NWL = NWL + 1 */
/* IF( WU.GE. L1-PIVMIN ) */
/* $ NWU = NWU + 1 */
/* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. */
/* $ L1-PIVMIN ) ) THEN */
/* M = M + 1 */
/* W( M ) = L1 */
/* * The uncertainty of eigenvalues of a 2x2 matrix is very small */
/* WERR( M ) = EPS * ABS( W( M ) ) * TWO */
/* IBLOCK( M ) = JBLK */
/* INDEXW( M ) = 1 */
/* ENDIF */
/* L2 = TMP1 + DISC */
/* IF( WL.GE. L2-PIVMIN ) */
/* $ NWL = NWL + 1 */
/* IF( WU.GE. L2-PIVMIN ) */
/* $ NWU = NWU + 1 */
/* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. */
/* $ L2-PIVMIN ) ) THEN */
/* M = M + 1 */
/* W( M ) = L2 */
/* * The uncertainty of eigenvalues of a 2x2 matrix is very small */
/* WERR( M ) = EPS * ABS( W( M ) ) * TWO */
/* IBLOCK( M ) = JBLK */
/* INDEXW( M ) = 2 */
/* ENDIF */
} else {
/* General Case - block of size IN >= 2 */
/* Compute local Gerschgorin interval and use it as the initial */
/* interval for SLAEBZ */
gu = d__[ibegin];
gl = d__[ibegin];
tmp1 = 0.f;
i__2 = iend;
for (j = ibegin; j <= i__2; ++j) {
/* Computing MIN */
r__1 = gl, r__2 = gers[(j << 1) - 1];
gl = dmin(r__1,r__2);
/* Computing MAX */
r__1 = gu, r__2 = gers[j * 2];
gu = dmax(r__1,r__2);
/* L40: */
}
spdiam = gu - gl;
gl = gl - spdiam * 2.f * eps * in - *pivmin * 2.f;
gu = gu + spdiam * 2.f * eps * in + *pivmin * 2.f;
if (irange > 1) {
if (gu < *wl) {
/* the local block contains none of the wanted eigenvalues */
nwl += in;
nwu += in;
goto L70;
}
/* refine search interval if possible, only range (WL,WU] matters */
gl = dmax(gl,*wl);
gu = dmin(gu,*wu);
if (gl >= gu) {
goto L70;
}
}
/* Find negcount of initial interval boundaries GL and GU */
work[*n + 1] = gl;
work[*n + in + 1] = gu;
slaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli,
pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
w[*m + 1], &iblock[*m + 1], &iinfo);
if (iinfo != 0) {
*info = iinfo;
return 0;
}
nwl += iwork[1];
nwu += iwork[in + 1];
iwoff = *m - iwork[1];
/* Compute Eigenvalues */
itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log(
2.f)) + 2;
slaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli,
pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, &
work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
&w[*m + 1], &iblock[*m + 1], &iinfo);
if (iinfo != 0) {
*info = iinfo;
return 0;
}
/* Copy eigenvalues into W and IBLOCK */
/* Use -JBLK for block number for unconverged eigenvalues. */
/* Loop over the number of output intervals from SLAEBZ */
i__2 = iout;
for (j = 1; j <= i__2; ++j) {
/* eigenvalue approximation is middle point of interval */
tmp1 = (work[j + *n] + work[j + in + *n]) * .5f;
/* semi length of error interval */
tmp2 = (r__1 = work[j + *n] - work[j + in + *n], dabs(r__1)) *
.5f;
if (j > iout - iinfo) {
/* Flag non-convergence. */
ncnvrg = TRUE_;
ib = -jblk;
} else {
ib = jblk;
}
i__3 = iwork[j + in] + iwoff;
for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
w[je] = tmp1;
werr[je] = tmp2;
indexw[je] = je - iwoff;
iblock[je] = ib;
/* L50: */
}
/* L60: */
}
*m += im;
}
L70:
;
}
/* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
/* If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
if (irange == 3) {
idiscl = *il - 1 - nwl;
idiscu = nwu - *iu;
if (idiscl > 0) {
im = 0;
i__1 = *m;
for (je = 1; je <= i__1; ++je) {
/* Remove some of the smallest eigenvalues from the left so that */
/* at the end IDISCL =0. Move all eigenvalues up to the left. */
if (w[je] <= wlu && idiscl > 0) {
--idiscl;
} else {
++im;
w[im] = w[je];
werr[im] = werr[je];
indexw[im] = indexw[je];
iblock[im] = iblock[je];
}
/* L80: */
}
*m = im;
}
if (idiscu > 0) {
/* Remove some of the largest eigenvalues from the right so that */
/* at the end IDISCU =0. Move all eigenvalues up to the left. */
im = *m + 1;
for (je = *m; je >= 1; --je) {
if (w[je] >= wul && idiscu > 0) {
--idiscu;
} else {
--im;
w[im] = w[je];
werr[im] = werr[je];
indexw[im] = indexw[je];
iblock[im] = iblock[je];
}
/* L81: */
}
jee = 0;
i__1 = *m;
for (je = im; je <= i__1; ++je) {
++jee;
w[jee] = w[je];
werr[jee] = werr[je];
indexw[jee] = indexw[je];
iblock[jee] = iblock[je];
/* L82: */
}
*m = *m - im + 1;
}
if (idiscl > 0 || idiscu > 0) {
/* Code to deal with effects of bad arithmetic. (If N(w) is */
/* monotone non-decreasing, this should never happen.) */
/* Some low eigenvalues to be discarded are not in (WL,WLU], */
/* or high eigenvalues to be discarded are not in (WUL,WU] */
/* so just kill off the smallest IDISCL/largest IDISCU */
/* eigenvalues, by marking the corresponding IBLOCK = 0 */
if (idiscl > 0) {
wkill = *wu;
i__1 = idiscl;
for (jdisc = 1; jdisc <= i__1; ++jdisc) {
iw = 0;
i__2 = *m;
for (je = 1; je <= i__2; ++je) {
if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
iw = je;
wkill = w[je];
}
/* L90: */
}
iblock[iw] = 0;
/* L100: */
}
}
if (idiscu > 0) {
wkill = *wl;
i__1 = idiscu;
for (jdisc = 1; jdisc <= i__1; ++jdisc) {
iw = 0;
i__2 = *m;
for (je = 1; je <= i__2; ++je) {
if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) {
iw = je;
wkill = w[je];
}
/* L110: */
}
iblock[iw] = 0;
/* L120: */
}
}
/* Now erase all eigenvalues with IBLOCK set to zero */
im = 0;
i__1 = *m;
for (je = 1; je <= i__1; ++je) {
if (iblock[je] != 0) {
++im;
w[im] = w[je];
werr[im] = werr[je];
indexw[im] = indexw[je];
iblock[im] = iblock[je];
}
/* L130: */
}
*m = im;
}
if (idiscl < 0 || idiscu < 0) {
toofew = TRUE_;
}
}
if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) {
toofew = TRUE_;
}
/* If ORDER='B', do nothing the eigenvalues are already sorted by */
/* block. */
/* If ORDER='E', sort the eigenvalues from smallest to largest */
if (lsame_(order, "E") && *nsplit > 1) {
i__1 = *m - 1;
for (je = 1; je <= i__1; ++je) {
ie = 0;
tmp1 = w[je];
i__2 = *m;
for (j = je + 1; j <= i__2; ++j) {
if (w[j] < tmp1) {
ie = j;
tmp1 = w[j];
}
/* L140: */
}
if (ie != 0) {
tmp2 = werr[ie];
itmp1 = iblock[ie];
itmp2 = indexw[ie];
w[ie] = w[je];
werr[ie] = werr[je];
iblock[ie] = iblock[je];
indexw[ie] = indexw[je];
w[je] = tmp1;
werr[je] = tmp2;
iblock[je] = itmp1;
indexw[je] = itmp2;
}
/* L150: */
}
}
*info = 0;
if (ncnvrg) {
++(*info);
}
if (toofew) {
*info += 2;
}
return 0;
/* End of SLARRD */
} /* slarrd_ */