mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
410 lines
12 KiB
C
410 lines
12 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Table of constant values */
|
||
|
|
||
|
static integer c__1 = 1;
|
||
|
|
||
|
/* Subroutine */ int slarrf_(integer *n, real *d__, real *l, real *ld,
|
||
|
integer *clstrt, integer *clend, real *w, real *wgap, real *werr,
|
||
|
real *spdiam, real *clgapl, real *clgapr, real *pivmin, real *sigma,
|
||
|
real *dplus, real *lplus, real *work, integer *info)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer i__1;
|
||
|
real r__1, r__2, r__3;
|
||
|
|
||
|
/* Builtin functions */
|
||
|
double sqrt(doublereal);
|
||
|
|
||
|
/* Local variables */
|
||
|
integer i__;
|
||
|
real s, bestshift, smlgrowth, eps, tmp, max1, max2, rrr1, rrr2, znm2,
|
||
|
growthbound, fail, fact, oldp;
|
||
|
integer indx;
|
||
|
real prod;
|
||
|
integer ktry;
|
||
|
real fail2, avgap, ldmax, rdmax;
|
||
|
integer shift;
|
||
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
|
||
|
integer *);
|
||
|
logical dorrr1;
|
||
|
real ldelta;
|
||
|
extern doublereal slamch_(char *);
|
||
|
logical nofail;
|
||
|
real mingap, lsigma, rdelta;
|
||
|
logical forcer;
|
||
|
real rsigma, clwdth;
|
||
|
extern logical sisnan_(real *);
|
||
|
logical sawnan1, sawnan2, tryrrr1;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
/* * */
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* Given the initial representation L D L^T and its cluster of close */
|
||
|
/* eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... */
|
||
|
/* W( CLEND ), SLARRF finds a new relatively robust representation */
|
||
|
/* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the */
|
||
|
/* eigenvalues of L(+) D(+) L(+)^T is relatively isolated. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The order of the matrix (subblock, if the matrix splitted). */
|
||
|
|
||
|
/* D (input) REAL array, dimension (N) */
|
||
|
/* The N diagonal elements of the diagonal matrix D. */
|
||
|
|
||
|
/* L (input) REAL array, dimension (N-1) */
|
||
|
/* The (N-1) subdiagonal elements of the unit bidiagonal */
|
||
|
/* matrix L. */
|
||
|
|
||
|
/* LD (input) REAL array, dimension (N-1) */
|
||
|
/* The (N-1) elements L(i)*D(i). */
|
||
|
|
||
|
/* CLSTRT (input) INTEGER */
|
||
|
/* The index of the first eigenvalue in the cluster. */
|
||
|
|
||
|
/* CLEND (input) INTEGER */
|
||
|
/* The index of the last eigenvalue in the cluster. */
|
||
|
|
||
|
/* W (input) REAL array, dimension >= (CLEND-CLSTRT+1) */
|
||
|
/* The eigenvalue APPROXIMATIONS of L D L^T in ascending order. */
|
||
|
/* W( CLSTRT ) through W( CLEND ) form the cluster of relatively */
|
||
|
/* close eigenalues. */
|
||
|
|
||
|
/* WGAP (input/output) REAL array, dimension >= (CLEND-CLSTRT+1) */
|
||
|
/* The separation from the right neighbor eigenvalue in W. */
|
||
|
|
||
|
/* WERR (input) REAL array, dimension >= (CLEND-CLSTRT+1) */
|
||
|
/* WERR contain the semiwidth of the uncertainty */
|
||
|
/* interval of the corresponding eigenvalue APPROXIMATION in W */
|
||
|
|
||
|
/* SPDIAM (input) estimate of the spectral diameter obtained from the */
|
||
|
/* Gerschgorin intervals */
|
||
|
|
||
|
/* CLGAPL, CLGAPR (input) absolute gap on each end of the cluster. */
|
||
|
/* Set by the calling routine to protect against shifts too close */
|
||
|
/* to eigenvalues outside the cluster. */
|
||
|
|
||
|
/* PIVMIN (input) DOUBLE PRECISION */
|
||
|
/* The minimum pivot allowed in the Sturm sequence. */
|
||
|
|
||
|
/* SIGMA (output) REAL */
|
||
|
/* The shift used to form L(+) D(+) L(+)^T. */
|
||
|
|
||
|
/* DPLUS (output) REAL array, dimension (N) */
|
||
|
/* The N diagonal elements of the diagonal matrix D(+). */
|
||
|
|
||
|
/* LPLUS (output) REAL array, dimension (N-1) */
|
||
|
/* The first (N-1) elements of LPLUS contain the subdiagonal */
|
||
|
/* elements of the unit bidiagonal matrix L(+). */
|
||
|
|
||
|
/* WORK (workspace) REAL array, dimension (2*N) */
|
||
|
/* Workspace. */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
|
||
|
/* Based on contributions by */
|
||
|
/* Beresford Parlett, University of California, Berkeley, USA */
|
||
|
/* Jim Demmel, University of California, Berkeley, USA */
|
||
|
/* Inderjit Dhillon, University of Texas, Austin, USA */
|
||
|
/* Osni Marques, LBNL/NERSC, USA */
|
||
|
/* Christof Voemel, University of California, Berkeley, USA */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. External Subroutines .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
--work;
|
||
|
--lplus;
|
||
|
--dplus;
|
||
|
--werr;
|
||
|
--wgap;
|
||
|
--w;
|
||
|
--ld;
|
||
|
--l;
|
||
|
--d__;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
fact = 2.f;
|
||
|
eps = slamch_("Precision");
|
||
|
shift = 0;
|
||
|
forcer = FALSE_;
|
||
|
/* Note that we cannot guarantee that for any of the shifts tried, */
|
||
|
/* the factorization has a small or even moderate element growth. */
|
||
|
/* There could be Ritz values at both ends of the cluster and despite */
|
||
|
/* backing off, there are examples where all factorizations tried */
|
||
|
/* (in IEEE mode, allowing zero pivots & infinities) have INFINITE */
|
||
|
/* element growth. */
|
||
|
/* For this reason, we should use PIVMIN in this subroutine so that at */
|
||
|
/* least the L D L^T factorization exists. It can be checked afterwards */
|
||
|
/* whether the element growth caused bad residuals/orthogonality. */
|
||
|
/* Decide whether the code should accept the best among all */
|
||
|
/* representations despite large element growth or signal INFO=1 */
|
||
|
nofail = TRUE_;
|
||
|
|
||
|
/* Compute the average gap length of the cluster */
|
||
|
clwdth = (r__1 = w[*clend] - w[*clstrt], dabs(r__1)) + werr[*clend] +
|
||
|
werr[*clstrt];
|
||
|
avgap = clwdth / (real) (*clend - *clstrt);
|
||
|
mingap = dmin(*clgapl,*clgapr);
|
||
|
/* Initial values for shifts to both ends of cluster */
|
||
|
/* Computing MIN */
|
||
|
r__1 = w[*clstrt], r__2 = w[*clend];
|
||
|
lsigma = dmin(r__1,r__2) - werr[*clstrt];
|
||
|
/* Computing MAX */
|
||
|
r__1 = w[*clstrt], r__2 = w[*clend];
|
||
|
rsigma = dmax(r__1,r__2) + werr[*clend];
|
||
|
/* Use a small fudge to make sure that we really shift to the outside */
|
||
|
lsigma -= dabs(lsigma) * 2.f * eps;
|
||
|
rsigma += dabs(rsigma) * 2.f * eps;
|
||
|
/* Compute upper bounds for how much to back off the initial shifts */
|
||
|
ldmax = mingap * .25f + *pivmin * 2.f;
|
||
|
rdmax = mingap * .25f + *pivmin * 2.f;
|
||
|
/* Computing MAX */
|
||
|
r__1 = avgap, r__2 = wgap[*clstrt];
|
||
|
ldelta = dmax(r__1,r__2) / fact;
|
||
|
/* Computing MAX */
|
||
|
r__1 = avgap, r__2 = wgap[*clend - 1];
|
||
|
rdelta = dmax(r__1,r__2) / fact;
|
||
|
|
||
|
/* Initialize the record of the best representation found */
|
||
|
|
||
|
s = slamch_("S");
|
||
|
smlgrowth = 1.f / s;
|
||
|
fail = (real) (*n - 1) * mingap / (*spdiam * eps);
|
||
|
fail2 = (real) (*n - 1) * mingap / (*spdiam * sqrt(eps));
|
||
|
bestshift = lsigma;
|
||
|
|
||
|
/* while (KTRY <= KTRYMAX) */
|
||
|
ktry = 0;
|
||
|
growthbound = *spdiam * 8.f;
|
||
|
L5:
|
||
|
sawnan1 = FALSE_;
|
||
|
sawnan2 = FALSE_;
|
||
|
/* Ensure that we do not back off too much of the initial shifts */
|
||
|
ldelta = dmin(ldmax,ldelta);
|
||
|
rdelta = dmin(rdmax,rdelta);
|
||
|
/* Compute the element growth when shifting to both ends of the cluster */
|
||
|
/* accept the shift if there is no element growth at one of the two ends */
|
||
|
/* Left end */
|
||
|
s = -lsigma;
|
||
|
dplus[1] = d__[1] + s;
|
||
|
if (dabs(dplus[1]) < *pivmin) {
|
||
|
dplus[1] = -(*pivmin);
|
||
|
/* Need to set SAWNAN1 because refined RRR test should not be used */
|
||
|
/* in this case */
|
||
|
sawnan1 = TRUE_;
|
||
|
}
|
||
|
max1 = dabs(dplus[1]);
|
||
|
i__1 = *n - 1;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
lplus[i__] = ld[i__] / dplus[i__];
|
||
|
s = s * lplus[i__] * l[i__] - lsigma;
|
||
|
dplus[i__ + 1] = d__[i__ + 1] + s;
|
||
|
if ((r__1 = dplus[i__ + 1], dabs(r__1)) < *pivmin) {
|
||
|
dplus[i__ + 1] = -(*pivmin);
|
||
|
/* Need to set SAWNAN1 because refined RRR test should not be used */
|
||
|
/* in this case */
|
||
|
sawnan1 = TRUE_;
|
||
|
}
|
||
|
/* Computing MAX */
|
||
|
r__2 = max1, r__3 = (r__1 = dplus[i__ + 1], dabs(r__1));
|
||
|
max1 = dmax(r__2,r__3);
|
||
|
/* L6: */
|
||
|
}
|
||
|
sawnan1 = sawnan1 || sisnan_(&max1);
|
||
|
if (forcer || max1 <= growthbound && ! sawnan1) {
|
||
|
*sigma = lsigma;
|
||
|
shift = 1;
|
||
|
goto L100;
|
||
|
}
|
||
|
/* Right end */
|
||
|
s = -rsigma;
|
||
|
work[1] = d__[1] + s;
|
||
|
if (dabs(work[1]) < *pivmin) {
|
||
|
work[1] = -(*pivmin);
|
||
|
/* Need to set SAWNAN2 because refined RRR test should not be used */
|
||
|
/* in this case */
|
||
|
sawnan2 = TRUE_;
|
||
|
}
|
||
|
max2 = dabs(work[1]);
|
||
|
i__1 = *n - 1;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
work[*n + i__] = ld[i__] / work[i__];
|
||
|
s = s * work[*n + i__] * l[i__] - rsigma;
|
||
|
work[i__ + 1] = d__[i__ + 1] + s;
|
||
|
if ((r__1 = work[i__ + 1], dabs(r__1)) < *pivmin) {
|
||
|
work[i__ + 1] = -(*pivmin);
|
||
|
/* Need to set SAWNAN2 because refined RRR test should not be used */
|
||
|
/* in this case */
|
||
|
sawnan2 = TRUE_;
|
||
|
}
|
||
|
/* Computing MAX */
|
||
|
r__2 = max2, r__3 = (r__1 = work[i__ + 1], dabs(r__1));
|
||
|
max2 = dmax(r__2,r__3);
|
||
|
/* L7: */
|
||
|
}
|
||
|
sawnan2 = sawnan2 || sisnan_(&max2);
|
||
|
if (forcer || max2 <= growthbound && ! sawnan2) {
|
||
|
*sigma = rsigma;
|
||
|
shift = 2;
|
||
|
goto L100;
|
||
|
}
|
||
|
/* If we are at this point, both shifts led to too much element growth */
|
||
|
/* Record the better of the two shifts (provided it didn't lead to NaN) */
|
||
|
if (sawnan1 && sawnan2) {
|
||
|
/* both MAX1 and MAX2 are NaN */
|
||
|
goto L50;
|
||
|
} else {
|
||
|
if (! sawnan1) {
|
||
|
indx = 1;
|
||
|
if (max1 <= smlgrowth) {
|
||
|
smlgrowth = max1;
|
||
|
bestshift = lsigma;
|
||
|
}
|
||
|
}
|
||
|
if (! sawnan2) {
|
||
|
if (sawnan1 || max2 <= max1) {
|
||
|
indx = 2;
|
||
|
}
|
||
|
if (max2 <= smlgrowth) {
|
||
|
smlgrowth = max2;
|
||
|
bestshift = rsigma;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* If we are here, both the left and the right shift led to */
|
||
|
/* element growth. If the element growth is moderate, then */
|
||
|
/* we may still accept the representation, if it passes a */
|
||
|
/* refined test for RRR. This test supposes that no NaN occurred. */
|
||
|
/* Moreover, we use the refined RRR test only for isolated clusters. */
|
||
|
if (clwdth < mingap / 128.f && dmin(max1,max2) < fail2 && ! sawnan1 && !
|
||
|
sawnan2) {
|
||
|
dorrr1 = TRUE_;
|
||
|
} else {
|
||
|
dorrr1 = FALSE_;
|
||
|
}
|
||
|
tryrrr1 = TRUE_;
|
||
|
if (tryrrr1 && dorrr1) {
|
||
|
if (indx == 1) {
|
||
|
tmp = (r__1 = dplus[*n], dabs(r__1));
|
||
|
znm2 = 1.f;
|
||
|
prod = 1.f;
|
||
|
oldp = 1.f;
|
||
|
for (i__ = *n - 1; i__ >= 1; --i__) {
|
||
|
if (prod <= eps) {
|
||
|
prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] *
|
||
|
work[*n + i__]) * oldp;
|
||
|
} else {
|
||
|
prod *= (r__1 = work[*n + i__], dabs(r__1));
|
||
|
}
|
||
|
oldp = prod;
|
||
|
/* Computing 2nd power */
|
||
|
r__1 = prod;
|
||
|
znm2 += r__1 * r__1;
|
||
|
/* Computing MAX */
|
||
|
r__2 = tmp, r__3 = (r__1 = dplus[i__] * prod, dabs(r__1));
|
||
|
tmp = dmax(r__2,r__3);
|
||
|
/* L15: */
|
||
|
}
|
||
|
rrr1 = tmp / (*spdiam * sqrt(znm2));
|
||
|
if (rrr1 <= 8.f) {
|
||
|
*sigma = lsigma;
|
||
|
shift = 1;
|
||
|
goto L100;
|
||
|
}
|
||
|
} else if (indx == 2) {
|
||
|
tmp = (r__1 = work[*n], dabs(r__1));
|
||
|
znm2 = 1.f;
|
||
|
prod = 1.f;
|
||
|
oldp = 1.f;
|
||
|
for (i__ = *n - 1; i__ >= 1; --i__) {
|
||
|
if (prod <= eps) {
|
||
|
prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] *
|
||
|
lplus[i__]) * oldp;
|
||
|
} else {
|
||
|
prod *= (r__1 = lplus[i__], dabs(r__1));
|
||
|
}
|
||
|
oldp = prod;
|
||
|
/* Computing 2nd power */
|
||
|
r__1 = prod;
|
||
|
znm2 += r__1 * r__1;
|
||
|
/* Computing MAX */
|
||
|
r__2 = tmp, r__3 = (r__1 = work[i__] * prod, dabs(r__1));
|
||
|
tmp = dmax(r__2,r__3);
|
||
|
/* L16: */
|
||
|
}
|
||
|
rrr2 = tmp / (*spdiam * sqrt(znm2));
|
||
|
if (rrr2 <= 8.f) {
|
||
|
*sigma = rsigma;
|
||
|
shift = 2;
|
||
|
goto L100;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
L50:
|
||
|
if (ktry < 1) {
|
||
|
/* If we are here, both shifts failed also the RRR test. */
|
||
|
/* Back off to the outside */
|
||
|
/* Computing MAX */
|
||
|
r__1 = lsigma - ldelta, r__2 = lsigma - ldmax;
|
||
|
lsigma = dmax(r__1,r__2);
|
||
|
/* Computing MIN */
|
||
|
r__1 = rsigma + rdelta, r__2 = rsigma + rdmax;
|
||
|
rsigma = dmin(r__1,r__2);
|
||
|
ldelta *= 2.f;
|
||
|
rdelta *= 2.f;
|
||
|
++ktry;
|
||
|
goto L5;
|
||
|
} else {
|
||
|
/* None of the representations investigated satisfied our */
|
||
|
/* criteria. Take the best one we found. */
|
||
|
if (smlgrowth < fail || nofail) {
|
||
|
lsigma = bestshift;
|
||
|
rsigma = bestshift;
|
||
|
forcer = TRUE_;
|
||
|
goto L5;
|
||
|
} else {
|
||
|
*info = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
L100:
|
||
|
if (shift == 1) {
|
||
|
} else if (shift == 2) {
|
||
|
/* store new L and D back into DPLUS, LPLUS */
|
||
|
scopy_(n, &work[1], &c__1, &dplus[1], &c__1);
|
||
|
i__1 = *n - 1;
|
||
|
scopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1);
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
/* End of SLARRF */
|
||
|
|
||
|
} /* slarrf_ */
|