mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
828 lines
31 KiB
TeX
828 lines
31 KiB
TeX
|
\section{Feature detection and description}
|
||
|
|
||
|
\ifCpp
|
||
|
\cvCppFunc{FAST}
|
||
|
Detects corners using FAST algorithm by E. Rosten (''Machine learning for high-speed corner detection'', 2006).
|
||
|
\fi
|
||
|
|
||
|
\cvdefCpp{
|
||
|
void FAST( const Mat\& image, vector<KeyPoint>\& keypoints,
|
||
|
int threshold, bool nonmaxSupression=true );
|
||
|
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{image}{The image. Keypoints (corners) will be detected on this.}
|
||
|
\cvarg{keypoints}{Keypoints detected on the image.}
|
||
|
\cvarg{threshold}{Threshold on difference between intensity of center pixel and
|
||
|
pixels on circle around this pixel. See description of the algorithm.}
|
||
|
\cvarg{nonmaxSupression}{If it is true then non-maximum supression will be applied to detected corners (keypoints). }
|
||
|
\end{description}
|
||
|
|
||
|
\ifCPy
|
||
|
\ifPy
|
||
|
\cvclass{CvSURFPoint}
|
||
|
A SURF keypoint, represented as a tuple \texttt{((x, y), laplacian, size, dir, hessian)}.
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{x}{x-coordinate of the feature within the image}
|
||
|
\cvarg{y}{y-coordinate of the feature within the image}
|
||
|
\cvarg{laplacian}{-1, 0 or +1. sign of the laplacian at the point. Can be used to speedup feature comparison since features with laplacians of different signs can not match}
|
||
|
\cvarg{size}{size of the feature}
|
||
|
\cvarg{dir}{orientation of the feature: 0..360 degrees}
|
||
|
\cvarg{hessian}{value of the hessian (can be used to approximately estimate the feature strengths; see also params.hessianThreshold)}
|
||
|
\end{description}
|
||
|
\fi
|
||
|
|
||
|
\cvCPyFunc{ExtractSURF}
|
||
|
Extracts Speeded Up Robust Features from an image.
|
||
|
|
||
|
\cvdefC{
|
||
|
void cvExtractSURF( \par const CvArr* image,\par const CvArr* mask,\par CvSeq** keypoints,\par CvSeq** descriptors,\par CvMemStorage* storage,\par CvSURFParams params );
|
||
|
}
|
||
|
\cvdefPy{ExtractSURF(image,mask,storage,params)-> (keypoints,descriptors)}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{image}{The input 8-bit grayscale image}
|
||
|
\cvarg{mask}{The optional input 8-bit mask. The features are only found in the areas that contain more than 50\% of non-zero mask pixels}
|
||
|
\ifC
|
||
|
\cvarg{keypoints}{The output parameter; double pointer to the sequence of keypoints. The sequence of CvSURFPoint structures is as follows:}
|
||
|
\begin{lstlisting}
|
||
|
typedef struct CvSURFPoint
|
||
|
{
|
||
|
CvPoint2D32f pt; // position of the feature within the image
|
||
|
int laplacian; // -1, 0 or +1. sign of the laplacian at the point.
|
||
|
// can be used to speedup feature comparison
|
||
|
// (normally features with laplacians of different
|
||
|
// signs can not match)
|
||
|
int size; // size of the feature
|
||
|
float dir; // orientation of the feature: 0..360 degrees
|
||
|
float hessian; // value of the hessian (can be used to
|
||
|
// approximately estimate the feature strengths;
|
||
|
// see also params.hessianThreshold)
|
||
|
}
|
||
|
CvSURFPoint;
|
||
|
\end{lstlisting}
|
||
|
\cvarg{descriptors}{The optional output parameter; double pointer to the sequence of descriptors. Depending on the params.extended value, each element of the sequence will be either a 64-element or a 128-element floating-point (\texttt{CV\_32F}) vector. If the parameter is NULL, the descriptors are not computed}
|
||
|
\else
|
||
|
\cvarg{keypoints}{sequence of keypoints.}
|
||
|
\cvarg{descriptors}{sequence of descriptors. Each SURF descriptor is a list of floats, of length 64 or 128.}
|
||
|
\fi
|
||
|
\cvarg{storage}{Memory storage where keypoints and descriptors will be stored}
|
||
|
\ifC
|
||
|
\cvarg{params}{Various algorithm parameters put to the structure CvSURFParams:}
|
||
|
\begin{lstlisting}
|
||
|
typedef struct CvSURFParams
|
||
|
{
|
||
|
int extended; // 0 means basic descriptors (64 elements each),
|
||
|
// 1 means extended descriptors (128 elements each)
|
||
|
double hessianThreshold; // only features with keypoint.hessian
|
||
|
// larger than that are extracted.
|
||
|
// good default value is ~300-500 (can depend on the
|
||
|
// average local contrast and sharpness of the image).
|
||
|
// user can further filter out some features based on
|
||
|
// their hessian values and other characteristics.
|
||
|
int nOctaves; // the number of octaves to be used for extraction.
|
||
|
// With each next octave the feature size is doubled
|
||
|
// (3 by default)
|
||
|
int nOctaveLayers; // The number of layers within each octave
|
||
|
// (4 by default)
|
||
|
}
|
||
|
CvSURFParams;
|
||
|
|
||
|
CvSURFParams cvSURFParams(double hessianThreshold, int extended=0);
|
||
|
// returns default parameters
|
||
|
\end{lstlisting}
|
||
|
\else
|
||
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(extended, hessianThreshold, nOctaves, nOctaveLayers)}:
|
||
|
\begin{description}
|
||
|
\cvarg{extended}{0 means basic descriptors (64 elements each), 1 means extended descriptors (128 elements each)}
|
||
|
\cvarg{hessianThreshold}{only features with hessian larger than that are extracted. good default value is ~300-500 (can depend on the average local contrast and sharpness of the image). user can further filter out some features based on their hessian values and other characteristics.}
|
||
|
\cvarg{nOctaves}{the number of octaves to be used for extraction. With each next octave the feature size is doubled (3 by default)}
|
||
|
\cvarg{nOctaveLayers}{The number of layers within each octave (4 by default)}
|
||
|
\end{description}}
|
||
|
\fi
|
||
|
\end{description}
|
||
|
|
||
|
The function cvExtractSURF finds robust features in the image, as
|
||
|
described in \cite{Bay06}. For each feature it returns its location, size,
|
||
|
orientation and optionally the descriptor, basic or extended. The function
|
||
|
can be used for object tracking and localization, image stitching etc.
|
||
|
|
||
|
\ifC
|
||
|
See the
|
||
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory.
|
||
|
\else
|
||
|
To extract strong SURF features from an image
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
>>> import cv
|
||
|
>>> im = cv.LoadImageM("building.jpg", cv.CV_LOAD_IMAGE_GRAYSCALE)
|
||
|
>>> (keypoints, descriptors) = cv.ExtractSURF(im, None, cv.CreateMemStorage(), (0, 30000, 3, 1))
|
||
|
>>> print len(keypoints), len(descriptors)
|
||
|
6 6
|
||
|
>>> for ((x, y), laplacian, size, dir, hessian) in keypoints:
|
||
|
... print "x=\%d y=\%d laplacian=\%d size=\%d dir=\%f hessian=\%f" \% (x, y, laplacian, size, dir, hessian)
|
||
|
x=30 y=27 laplacian=-1 size=31 dir=69.778503 hessian=36979.789062
|
||
|
x=296 y=197 laplacian=1 size=33 dir=111.081039 hessian=31514.349609
|
||
|
x=296 y=266 laplacian=1 size=32 dir=107.092300 hessian=31477.908203
|
||
|
x=254 y=284 laplacian=1 size=31 dir=279.137360 hessian=34169.800781
|
||
|
x=498 y=525 laplacian=-1 size=33 dir=278.006592 hessian=31002.759766
|
||
|
x=777 y=281 laplacian=1 size=70 dir=167.940964 hessian=35538.363281
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\fi
|
||
|
|
||
|
\cvCPyFunc{GetStarKeypoints}
|
||
|
Retrieves keypoints using the StarDetector algorithm.
|
||
|
|
||
|
\cvdefC{
|
||
|
CvSeq* cvGetStarKeypoints( \par const CvArr* image,\par CvMemStorage* storage,\par CvStarDetectorParams params=cvStarDetectorParams() );
|
||
|
}
|
||
|
\cvdefPy{GetStarKeypoints(image,storage,params)-> keypoints}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{image}{The input 8-bit grayscale image}
|
||
|
\cvarg{storage}{Memory storage where the keypoints will be stored}
|
||
|
\ifC
|
||
|
\cvarg{params}{Various algorithm parameters given to the structure CvStarDetectorParams:}
|
||
|
\begin{lstlisting}
|
||
|
typedef struct CvStarDetectorParams
|
||
|
{
|
||
|
int maxSize; // maximal size of the features detected. The following
|
||
|
// values of the parameter are supported:
|
||
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
||
|
int responseThreshold; // threshold for the approximatd laplacian,
|
||
|
// used to eliminate weak features
|
||
|
int lineThresholdProjected; // another threshold for laplacian to
|
||
|
// eliminate edges
|
||
|
int lineThresholdBinarized; // another threshold for the feature
|
||
|
// scale to eliminate edges
|
||
|
int suppressNonmaxSize; // linear size of a pixel neighborhood
|
||
|
// for non-maxima suppression
|
||
|
}
|
||
|
CvStarDetectorParams;
|
||
|
\end{lstlisting}
|
||
|
\else
|
||
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize)}:
|
||
|
\begin{description}
|
||
|
\cvarg{maxSize}{maximal size of the features detected. The following values of the parameter are supported: 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128}
|
||
|
\cvarg{responseThreshold}{threshold for the approximatd laplacian, used to eliminate weak features}
|
||
|
\cvarg{lineThresholdProjected}{another threshold for laplacian to eliminate edges}
|
||
|
\cvarg{lineThresholdBinarized}{another threshold for the feature scale to eliminate edges}
|
||
|
\cvarg{suppressNonmaxSize}{linear size of a pixel neighborhood for non-maxima suppression}
|
||
|
\end{description}
|
||
|
}
|
||
|
\fi
|
||
|
\end{description}
|
||
|
|
||
|
The function GetStarKeypoints extracts keypoints that are local
|
||
|
scale-space extremas. The scale-space is constructed by computing
|
||
|
approximate values of laplacians with different sigma's at each
|
||
|
pixel. Instead of using pyramids, a popular approach to save computing
|
||
|
time, all of the laplacians are computed at each pixel of the original
|
||
|
high-resolution image. But each approximate laplacian value is computed
|
||
|
in O(1) time regardless of the sigma, thanks to the use of integral
|
||
|
images. The algorithm is based on the paper
|
||
|
Agrawal08
|
||
|
, but instead
|
||
|
of a square, hexagon or octagon it uses an 8-end star shape, hence the name,
|
||
|
consisting of overlapping upright and tilted squares.
|
||
|
|
||
|
\ifC
|
||
|
Each computed feature is represented by the following structure:
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
typedef struct CvStarKeypoint
|
||
|
{
|
||
|
CvPoint pt; // coordinates of the feature
|
||
|
int size; // feature size, see CvStarDetectorParams::maxSize
|
||
|
float response; // the approximated laplacian value at that point.
|
||
|
}
|
||
|
CvStarKeypoint;
|
||
|
|
||
|
inline CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response);
|
||
|
\end{lstlisting}
|
||
|
\else
|
||
|
Each keypoint is represented by a tuple \texttt{((x, y), size, response)}:
|
||
|
\begin{description}
|
||
|
\cvarg{x, y}{Screen coordinates of the keypoint}
|
||
|
\cvarg{size}{feature size, up to \texttt{maxSize}}
|
||
|
\cvarg{response}{approximated laplacian value for the keypoint}
|
||
|
\end{description}
|
||
|
\fi
|
||
|
|
||
|
\ifC
|
||
|
Below is the small usage sample:
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
#include "cv.h"
|
||
|
#include "highgui.h"
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
const char* filename = argc > 1 ? argv[1] : "lena.jpg";
|
||
|
IplImage* img = cvLoadImage( filename, 0 ), *cimg;
|
||
|
CvMemStorage* storage = cvCreateMemStorage(0);
|
||
|
CvSeq* keypoints = 0;
|
||
|
int i;
|
||
|
|
||
|
if( !img )
|
||
|
return 0;
|
||
|
cvNamedWindow( "image", 1 );
|
||
|
cvShowImage( "image", img );
|
||
|
cvNamedWindow( "features", 1 );
|
||
|
cimg = cvCreateImage( cvGetSize(img), 8, 3 );
|
||
|
cvCvtColor( img, cimg, CV_GRAY2BGR );
|
||
|
|
||
|
keypoints = cvGetStarKeypoints( img, storage, cvStarDetectorParams(45) );
|
||
|
|
||
|
for( i = 0; i < (keypoints ? keypoints->total : 0); i++ )
|
||
|
{
|
||
|
CvStarKeypoint kpt = *(CvStarKeypoint*)cvGetSeqElem(keypoints, i);
|
||
|
int r = kpt.size/2;
|
||
|
cvCircle( cimg, kpt.pt, r, CV_RGB(0,255,0));
|
||
|
cvLine( cimg, cvPoint(kpt.pt.x + r, kpt.pt.y + r),
|
||
|
cvPoint(kpt.pt.x - r, kpt.pt.y - r), CV_RGB(0,255,0));
|
||
|
cvLine( cimg, cvPoint(kpt.pt.x - r, kpt.pt.y + r),
|
||
|
cvPoint(kpt.pt.x + r, kpt.pt.y - r), CV_RGB(0,255,0));
|
||
|
}
|
||
|
cvShowImage( "features", cimg );
|
||
|
cvWaitKey();
|
||
|
}
|
||
|
\end{lstlisting}
|
||
|
\fi
|
||
|
|
||
|
\fi
|
||
|
\ifCpp
|
||
|
|
||
|
\cvclass{MSER}
|
||
|
Maximally-Stable Extremal Region Extractor
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class MSER : public CvMSERParams
|
||
|
{
|
||
|
public:
|
||
|
// default constructor
|
||
|
MSER();
|
||
|
// constructor that initializes all the algorithm parameters
|
||
|
MSER( int _delta, int _min_area, int _max_area,
|
||
|
float _max_variation, float _min_diversity,
|
||
|
int _max_evolution, double _area_threshold,
|
||
|
double _min_margin, int _edge_blur_size );
|
||
|
// runs the extractor on the specified image; returns the MSERs,
|
||
|
// each encoded as a contour (vector<Point>, see findContours)
|
||
|
// the optional mask marks the area where MSERs are searched for
|
||
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const;
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
The class encapsulates all the parameters of MSER (see \url{http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions}) extraction algorithm.
|
||
|
|
||
|
\cvclass{StarDetector}
|
||
|
Implements Star keypoint detector
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class StarDetector : CvStarDetectorParams
|
||
|
{
|
||
|
public:
|
||
|
// default constructor
|
||
|
StarDetector();
|
||
|
// the full constructor initialized all the algorithm parameters:
|
||
|
// maxSize - maximum size of the features. The following
|
||
|
// values of the parameter are supported:
|
||
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
||
|
// responseThreshold - threshold for the approximated laplacian,
|
||
|
// used to eliminate weak features. The larger it is,
|
||
|
// the less features will be retrieved
|
||
|
// lineThresholdProjected - another threshold for the laplacian to
|
||
|
// eliminate edges
|
||
|
// lineThresholdBinarized - another threshold for the feature
|
||
|
// size to eliminate edges.
|
||
|
// The larger the 2 threshold, the more points you get.
|
||
|
StarDetector(int maxSize, int responseThreshold,
|
||
|
int lineThresholdProjected,
|
||
|
int lineThresholdBinarized,
|
||
|
int suppressNonmaxSize);
|
||
|
|
||
|
// finds keypoints in an image
|
||
|
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const;
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
The class implements a modified version of CenSurE keypoint detector described in
|
||
|
\cite{Agrawal08}
|
||
|
|
||
|
\cvclass{SIFT}
|
||
|
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT).
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class CV_EXPORTS SIFT
|
||
|
{
|
||
|
public:
|
||
|
struct CommonParams
|
||
|
{
|
||
|
static const int DEFAULT_NOCTAVES = 4;
|
||
|
static const int DEFAULT_NOCTAVE_LAYERS = 3;
|
||
|
static const int DEFAULT_FIRST_OCTAVE = -1;
|
||
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 };
|
||
|
|
||
|
CommonParams();
|
||
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave,
|
||
|
int _angleMode );
|
||
|
int nOctaves, nOctaveLayers, firstOctave;
|
||
|
int angleMode;
|
||
|
};
|
||
|
|
||
|
struct DetectorParams
|
||
|
{
|
||
|
static double GET_DEFAULT_THRESHOLD()
|
||
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; }
|
||
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; }
|
||
|
|
||
|
DetectorParams();
|
||
|
DetectorParams( double _threshold, double _edgeThreshold );
|
||
|
double threshold, edgeThreshold;
|
||
|
};
|
||
|
|
||
|
struct DescriptorParams
|
||
|
{
|
||
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; }
|
||
|
static const bool DEFAULT_IS_NORMALIZE = true;
|
||
|
static const int DESCRIPTOR_SIZE = 128;
|
||
|
|
||
|
DescriptorParams();
|
||
|
DescriptorParams( double _magnification, bool _isNormalize,
|
||
|
bool _recalculateAngles );
|
||
|
double magnification;
|
||
|
bool isNormalize;
|
||
|
bool recalculateAngles;
|
||
|
};
|
||
|
|
||
|
SIFT();
|
||
|
//! sift-detector constructor
|
||
|
SIFT( double _threshold, double _edgeThreshold,
|
||
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
||
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
||
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
||
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
||
|
//! sift-descriptor constructor
|
||
|
SIFT( double _magnification, bool _isNormalize=true,
|
||
|
bool _recalculateAngles = true,
|
||
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
||
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
||
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
||
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
||
|
SIFT( const CommonParams& _commParams,
|
||
|
const DetectorParams& _detectorParams = DetectorParams(),
|
||
|
const DescriptorParams& _descriptorParams = DescriptorParams() );
|
||
|
|
||
|
//! returns the descriptor size in floats (128)
|
||
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; }
|
||
|
//! finds the keypoints using SIFT algorithm
|
||
|
void operator()(const Mat& img, const Mat& mask,
|
||
|
vector<KeyPoint>& keypoints) const;
|
||
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
||
|
//! Optionally it can compute descriptors for the user-provided keypoints
|
||
|
void operator()(const Mat& img, const Mat& mask,
|
||
|
vector<KeyPoint>& keypoints,
|
||
|
Mat& descriptors,
|
||
|
bool useProvidedKeypoints=false) const;
|
||
|
|
||
|
CommonParams getCommonParams () const { return commParams; }
|
||
|
DetectorParams getDetectorParams () const { return detectorParams; }
|
||
|
DescriptorParams getDescriptorParams () const { return descriptorParams; }
|
||
|
protected:
|
||
|
...
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\cvclass{SURF}
|
||
|
Class for extracting Speeded Up Robust Features from an image.
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class SURF : public CvSURFParams
|
||
|
{
|
||
|
public:
|
||
|
// default constructor
|
||
|
SURF();
|
||
|
// constructor that initializes all the algorithm parameters
|
||
|
SURF(double _hessianThreshold, int _nOctaves=4,
|
||
|
int _nOctaveLayers=2, bool _extended=false);
|
||
|
// returns the number of elements in each descriptor (64 or 128)
|
||
|
int descriptorSize() const;
|
||
|
// detects keypoints using fast multi-scale Hessian detector
|
||
|
void operator()(const Mat& img, const Mat& mask,
|
||
|
vector<KeyPoint>& keypoints) const;
|
||
|
// detects keypoints and computes the SURF descriptors for them
|
||
|
void operator()(const Mat& img, const Mat& mask,
|
||
|
vector<KeyPoint>& keypoints,
|
||
|
vector<float>& descriptors,
|
||
|
bool useProvidedKeypoints=false) const;
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
The class \texttt{SURF} implements Speeded Up Robust Features descriptor \cite{Bay06}.
|
||
|
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints
|
||
|
(which is the default option), but the descriptors can be also computed for the user-specified keypoints.
|
||
|
The function can be used for object tracking and localization, image stitching etc. See the
|
||
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory.
|
||
|
|
||
|
\cvclass{RandomizedTree}
|
||
|
The class contains base structure for \texttt{RTreeClassifier}
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class CV_EXPORTS RandomizedTree
|
||
|
{
|
||
|
public:
|
||
|
friend class RTreeClassifier;
|
||
|
|
||
|
RandomizedTree();
|
||
|
~RandomizedTree();
|
||
|
|
||
|
void train(std::vector<BaseKeypoint> const& base_set,
|
||
|
cv::RNG &rng, int depth, int views,
|
||
|
size_t reduced_num_dim, int num_quant_bits);
|
||
|
void train(std::vector<BaseKeypoint> const& base_set,
|
||
|
cv::RNG &rng, PatchGenerator &make_patch, int depth,
|
||
|
int views, size_t reduced_num_dim, int num_quant_bits);
|
||
|
|
||
|
// following two funcs are EXPERIMENTAL
|
||
|
//(do not use unless you know exactly what you do)
|
||
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2],
|
||
|
int clamp_mode=0);
|
||
|
static void quantizeVector(float *src, int dim, int N, float bnds[2],
|
||
|
uchar *dst);
|
||
|
|
||
|
// patch_data must be a 32x32 array (no row padding)
|
||
|
float* getPosterior(uchar* patch_data);
|
||
|
const float* getPosterior(uchar* patch_data) const;
|
||
|
uchar* getPosterior2(uchar* patch_data);
|
||
|
|
||
|
void read(const char* file_name, int num_quant_bits);
|
||
|
void read(std::istream &is, int num_quant_bits);
|
||
|
void write(const char* file_name) const;
|
||
|
void write(std::ostream &os) const;
|
||
|
|
||
|
int classes() { return classes_; }
|
||
|
int depth() { return depth_; }
|
||
|
|
||
|
void discardFloatPosteriors() { freePosteriors(1); }
|
||
|
|
||
|
inline void applyQuantization(int num_quant_bits)
|
||
|
{ makePosteriors2(num_quant_bits); }
|
||
|
|
||
|
private:
|
||
|
int classes_;
|
||
|
int depth_;
|
||
|
int num_leaves_;
|
||
|
std::vector<RTreeNode> nodes_;
|
||
|
float **posteriors_; // 16-bytes aligned posteriors
|
||
|
uchar **posteriors2_; // 16-bytes aligned posteriors
|
||
|
std::vector<int> leaf_counts_;
|
||
|
|
||
|
void createNodes(int num_nodes, cv::RNG &rng);
|
||
|
void allocPosteriorsAligned(int num_leaves, int num_classes);
|
||
|
void freePosteriors(int which);
|
||
|
// which: 1=posteriors_, 2=posteriors2_, 3=both
|
||
|
void init(int classes, int depth, cv::RNG &rng);
|
||
|
void addExample(int class_id, uchar* patch_data);
|
||
|
void finalize(size_t reduced_num_dim, int num_quant_bits);
|
||
|
int getIndex(uchar* patch_data) const;
|
||
|
inline float* getPosteriorByIndex(int index);
|
||
|
inline uchar* getPosteriorByIndex2(int index);
|
||
|
inline const float* getPosteriorByIndex(int index) const;
|
||
|
void convertPosteriorsToChar();
|
||
|
void makePosteriors2(int num_quant_bits);
|
||
|
void compressLeaves(size_t reduced_num_dim);
|
||
|
void estimateQuantPercForPosteriors(float perc[2]);
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\cvCppFunc{RandomizedTree::train}
|
||
|
Trains a randomized tree using input set of keypoints
|
||
|
|
||
|
\cvdefCpp{
|
||
|
void train(std::vector<BaseKeypoint> const\& base\_set, cv::RNG \&rng,
|
||
|
PatchGenerator \&make\_patch, int depth, int views, size\_t reduced\_num\_dim,
|
||
|
int num\_quant\_bits);
|
||
|
}
|
||
|
\cvdefCpp{
|
||
|
void train(std::vector<BaseKeypoint> const\& base\_set, cv::RNG \&rng,
|
||
|
PatchGenerator \&make\_patch, int depth, int views, size\_t reduced\_num\_dim,
|
||
|
int num\_quant\_bits);
|
||
|
}
|
||
|
\begin{description}
|
||
|
\cvarg{base\_set} {Vector of \texttt{BaseKeypoint} type. Contains keypoints from the image are used for training}
|
||
|
\cvarg{rng} {Random numbers generator is used for training}
|
||
|
\cvarg{make\_patch} {Patch generator is used for training}
|
||
|
\cvarg{depth} {Maximum tree depth}
|
||
|
%\cvarg{views} {}
|
||
|
\cvarg{reduced\_num\_dim} {Number of dimensions are used in compressed signature}
|
||
|
\cvarg{num\_quant\_bits} {Number of bits are used for quantization}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RandomizedTree::read}
|
||
|
Reads pre-saved randomized tree from file or stream
|
||
|
\cvdefCpp{read(const char* file\_name, int num\_quant\_bits)}
|
||
|
\cvdefCpp{read(std::istream \&is, int num\_quant\_bits)}
|
||
|
\begin{description}
|
||
|
\cvarg{file\_name}{Filename of file contains randomized tree data}
|
||
|
\cvarg{is}{Input stream associated with file contains randomized tree data}
|
||
|
\cvarg{num\_quant\_bits} {Number of bits are used for quantization}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RandomizedTree::write}
|
||
|
Writes current randomized tree to a file or stream
|
||
|
\cvdefCpp{void write(const char* file\_name) const;}
|
||
|
\cvdefCpp{void write(std::ostream \&os) const;}
|
||
|
\begin{description}
|
||
|
\cvarg{file\_name}{Filename of file where randomized tree data will be stored}
|
||
|
\cvarg{is}{Output stream associated with file where randomized tree data will be stored}
|
||
|
\end{description}
|
||
|
|
||
|
|
||
|
\cvCppFunc{RandomizedTree::applyQuantization}
|
||
|
Applies quantization to the current randomized tree
|
||
|
\cvdefCpp{void applyQuantization(int num\_quant\_bits)}
|
||
|
\begin{description}
|
||
|
\cvarg{num\_quant\_bits} {Number of bits are used for quantization}
|
||
|
\end{description}
|
||
|
|
||
|
\cvclass{RTreeNode}
|
||
|
The class contains base structure for \texttt{RandomizedTree}
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
struct RTreeNode
|
||
|
{
|
||
|
short offset1, offset2;
|
||
|
|
||
|
RTreeNode() {}
|
||
|
|
||
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
|
||
|
: offset1(y1*PATCH_SIZE + x1),
|
||
|
offset2(y2*PATCH_SIZE + x2)
|
||
|
{}
|
||
|
|
||
|
//! Left child on 0, right child on 1
|
||
|
inline bool operator() (uchar* patch_data) const
|
||
|
{
|
||
|
return patch_data[offset1] > patch_data[offset2];
|
||
|
}
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
|
||
|
\cvclass{RTreeClassifier}
|
||
|
The class contains \texttt{RTreeClassifier}. It represents calonder descriptor which was originally introduced by Michael Calonder
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class CV_EXPORTS RTreeClassifier
|
||
|
{
|
||
|
public:
|
||
|
static const int DEFAULT_TREES = 48;
|
||
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
|
||
|
|
||
|
RTreeClassifier();
|
||
|
|
||
|
void train(std::vector<BaseKeypoint> const& base_set,
|
||
|
cv::RNG &rng,
|
||
|
int num_trees = RTreeClassifier::DEFAULT_TREES,
|
||
|
int depth = DEFAULT_DEPTH,
|
||
|
int views = DEFAULT_VIEWS,
|
||
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
|
||
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
|
||
|
bool print_status = true);
|
||
|
void train(std::vector<BaseKeypoint> const& base_set,
|
||
|
cv::RNG &rng,
|
||
|
PatchGenerator &make_patch,
|
||
|
int num_trees = RTreeClassifier::DEFAULT_TREES,
|
||
|
int depth = DEFAULT_DEPTH,
|
||
|
int views = DEFAULT_VIEWS,
|
||
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
|
||
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
|
||
|
bool print_status = true);
|
||
|
|
||
|
// sig must point to a memory block of at least
|
||
|
//classes()*sizeof(float|uchar) bytes
|
||
|
void getSignature(IplImage *patch, uchar *sig);
|
||
|
void getSignature(IplImage *patch, float *sig);
|
||
|
void getSparseSignature(IplImage *patch, float *sig,
|
||
|
float thresh);
|
||
|
|
||
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
|
||
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
|
||
|
int sig_len=176);
|
||
|
static inline uchar* safeSignatureAlloc(int num_sig=1,
|
||
|
int sig_len=176);
|
||
|
|
||
|
inline int classes() { return classes_; }
|
||
|
inline int original_num_classes()
|
||
|
{ return original_num_classes_; }
|
||
|
|
||
|
void setQuantization(int num_quant_bits);
|
||
|
void discardFloatPosteriors();
|
||
|
|
||
|
void read(const char* file_name);
|
||
|
void read(std::istream &is);
|
||
|
void write(const char* file_name) const;
|
||
|
void write(std::ostream &os) const;
|
||
|
|
||
|
std::vector<RandomizedTree> trees_;
|
||
|
|
||
|
private:
|
||
|
int classes_;
|
||
|
int num_quant_bits_;
|
||
|
uchar **posteriors_;
|
||
|
ushort *ptemp_;
|
||
|
int original_num_classes_;
|
||
|
bool keep_floats_;
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::train}
|
||
|
Trains a randomized tree classificator using input set of keypoints
|
||
|
\cvdefCpp{
|
||
|
void train(std::vector<BaseKeypoint> const\& base\_set,
|
||
|
cv::RNG \&rng,
|
||
|
int num\_trees = RTreeClassifier::DEFAULT\_TREES,
|
||
|
int depth = DEFAULT\_DEPTH,
|
||
|
int views = DEFAULT\_VIEWS,
|
||
|
size\_t reduced\_num\_dim = DEFAULT\_REDUCED\_NUM\_DIM,
|
||
|
int num\_quant\_bits = DEFAULT\_NUM\_QUANT\_BITS, bool print\_status = true);
|
||
|
}
|
||
|
\cvdefCpp{
|
||
|
void train(std::vector<BaseKeypoint> const\& base\_set,
|
||
|
cv::RNG \&rng,
|
||
|
PatchGenerator \&make\_patch,
|
||
|
int num\_trees = RTreeClassifier::DEFAULT\_TREES,
|
||
|
int depth = DEFAULT\_DEPTH,
|
||
|
int views = DEFAULT\_VIEWS,
|
||
|
size\_t reduced\_num\_dim = DEFAULT\_REDUCED\_NUM\_DIM,
|
||
|
int num\_quant\_bits = DEFAULT\_NUM\_QUANT\_BITS, bool print\_status = true);
|
||
|
}
|
||
|
\begin{description}
|
||
|
\cvarg{base\_set} {Vector of \texttt{BaseKeypoint} type. Contains keypoints from the image are used for training}
|
||
|
\cvarg{rng} {Random numbers generator is used for training}
|
||
|
\cvarg{make\_patch} {Patch generator is used for training}
|
||
|
\cvarg{num\_trees} {Number of randomized trees used in RTreeClassificator}
|
||
|
\cvarg{depth} {Maximum tree depth}
|
||
|
%\cvarg{views} {}
|
||
|
\cvarg{reduced\_num\_dim} {Number of dimensions are used in compressed signature}
|
||
|
\cvarg{num\_quant\_bits} {Number of bits are used for quantization}
|
||
|
\cvarg{print\_status} {Print current status of training on the console}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::getSignature}
|
||
|
Returns signature for image patch
|
||
|
\cvdefCpp{
|
||
|
void getSignature(IplImage *patch, uchar *sig)
|
||
|
}
|
||
|
\cvdefCpp{
|
||
|
void getSignature(IplImage *patch, float *sig)
|
||
|
}
|
||
|
\begin{description}
|
||
|
\cvarg{patch} {Image patch to calculate signature for}
|
||
|
\cvarg{sig} {Output signature (array dimension is \texttt{reduced\_num\_dim)}}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::getSparseSignature}
|
||
|
The function is simular to \texttt{getSignature} but uses the threshold for removing all signature elements less than the threshold. So that the signature is compressed
|
||
|
\cvdefCpp{
|
||
|
void getSparseSignature(IplImage *patch, float *sig,
|
||
|
float thresh);
|
||
|
}
|
||
|
\begin{description}
|
||
|
\cvarg{patch} {Image patch to calculate signature for}
|
||
|
\cvarg{sig} {Output signature (array dimension is \texttt{reduced\_num\_dim)}}
|
||
|
\cvarg{tresh} {The threshold that is used for compressing the signature}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::countNonZeroElements}
|
||
|
The function returns the number of non-zero elements in the input array.
|
||
|
\cvdefCpp{
|
||
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
|
||
|
}
|
||
|
\begin{description}
|
||
|
\cvarg{vec}{Input vector contains float elements}
|
||
|
\cvarg{n}{Input vector size}
|
||
|
\cvarg{tol} {The threshold used for elements counting. We take all elements are less than \texttt{tol} as zero elements}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::read}
|
||
|
Reads pre-saved RTreeClassifier from file or stream
|
||
|
\cvdefCpp{read(const char* file\_name)}
|
||
|
\cvdefCpp{read(std::istream \&is)}
|
||
|
\begin{description}
|
||
|
\cvarg{file\_name}{Filename of file contains randomized tree data}
|
||
|
\cvarg{is}{Input stream associated with file contains randomized tree data}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::write}
|
||
|
Writes current RTreeClassifier to a file or stream
|
||
|
\cvdefCpp{void write(const char* file\_name) const;}
|
||
|
\cvdefCpp{void write(std::ostream \&os) const;}
|
||
|
\begin{description}
|
||
|
\cvarg{file\_name}{Filename of file where randomized tree data will be stored}
|
||
|
\cvarg{is}{Output stream associated with file where randomized tree data will be stored}
|
||
|
\end{description}
|
||
|
|
||
|
|
||
|
\cvCppFunc{RTreeClassifier::setQuantization}
|
||
|
Applies quantization to the current randomized tree
|
||
|
\cvdefCpp{void setQuantization(int num\_quant\_bits)}
|
||
|
\begin{description}
|
||
|
\cvarg{num\_quant\_bits} {Number of bits are used for quantization}
|
||
|
\end{description}
|
||
|
|
||
|
Below there is an example of \texttt{RTreeClassifier} usage for feature matching. There are test and train images and we extract features from both with SURF. Output is $best\_corr$ and $best\_corr\_idx$ arrays which keep the best probabilities and corresponding features indexes for every train feature.
|
||
|
% ===== Example. Using RTreeClassifier for features matching =====
|
||
|
\begin{lstlisting}
|
||
|
CvMemStorage* storage = cvCreateMemStorage(0);
|
||
|
CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
|
||
|
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
|
||
|
CvSURFParams params = cvSURFParams(500, 1);
|
||
|
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
|
||
|
storage, params );
|
||
|
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
|
||
|
storage, params );
|
||
|
|
||
|
cv::RTreeClassifier detector;
|
||
|
int patch_width = cv::PATCH_SIZE;
|
||
|
iint patch_height = cv::PATCH_SIZE;
|
||
|
vector<cv::BaseKeypoint> base_set;
|
||
|
int i=0;
|
||
|
CvSURFPoint* point;
|
||
|
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
|
||
|
{
|
||
|
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
|
||
|
base_set.push_back(
|
||
|
cv::BaseKeypoint(point->pt.x,point->pt.y,train_image));
|
||
|
}
|
||
|
|
||
|
//Detector training
|
||
|
cv::RNG rng( cvGetTickCount() );
|
||
|
cv::PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
|
||
|
-CV_PI/3,CV_PI/3);
|
||
|
|
||
|
printf("RTree Classifier training...\n");
|
||
|
detector.train(base_set,rng,gen,24,cv::DEFAULT_DEPTH,2000,
|
||
|
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
|
||
|
printf("Done\n");
|
||
|
|
||
|
float* signature = new float[detector.original_num_classes()];
|
||
|
float* best_corr;
|
||
|
int* best_corr_idx;
|
||
|
if (imageKeypoints->total > 0)
|
||
|
{
|
||
|
best_corr = new float[imageKeypoints->total];
|
||
|
best_corr_idx = new int[imageKeypoints->total];
|
||
|
}
|
||
|
|
||
|
for(i=0; i < imageKeypoints->total; i++)
|
||
|
{
|
||
|
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
|
||
|
int part_idx = -1;
|
||
|
float prob = 0.0f;
|
||
|
|
||
|
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
|
||
|
(int)(point->pt.y) - patch_height/2,
|
||
|
patch_width, patch_height);
|
||
|
cvSetImageROI(test_image, roi);
|
||
|
roi = cvGetImageROI(test_image);
|
||
|
if(roi.width != patch_width || roi.height != patch_height)
|
||
|
{
|
||
|
best_corr_idx[i] = part_idx;
|
||
|
best_corr[i] = prob;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cvSetImageROI(test_image, roi);
|
||
|
IplImage* roi_image =
|
||
|
cvCreateImage(cvSize(roi.width, roi.height),
|
||
|
test_image->depth, test_image->nChannels);
|
||
|
cvCopy(test_image,roi_image);
|
||
|
|
||
|
detector.getSignature(roi_image, signature);
|
||
|
for (int j = 0; j< detector.original_num_classes();j++)
|
||
|
{
|
||
|
if (prob < signature[j])
|
||
|
{
|
||
|
part_idx = j;
|
||
|
prob = signature[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
best_corr_idx[i] = part_idx;
|
||
|
best_corr[i] = prob;
|
||
|
|
||
|
|
||
|
if (roi_image)
|
||
|
cvReleaseImage(&roi_image);
|
||
|
}
|
||
|
cvResetImageROI(test_image);
|
||
|
}
|
||
|
|
||
|
\end{lstlisting}
|
||
|
\fi
|