mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 15:04:01 +08:00
461 lines
13 KiB
C++
461 lines
13 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include "opencv2/core/gpumat.hpp"
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace cv::gpu;
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
|
||
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
|
||
|
{
|
||
|
if (refcount)
|
||
|
CV_XADD(refcount, 1);
|
||
|
}
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
|
||
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
|
||
|
step(step_), data((uchar*)data_), refcount(0),
|
||
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
||
|
{
|
||
|
size_t minstep = cols * elemSize();
|
||
|
|
||
|
if (step == Mat::AUTO_STEP)
|
||
|
{
|
||
|
step = minstep;
|
||
|
flags |= Mat::CONTINUOUS_FLAG;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rows == 1)
|
||
|
step = minstep;
|
||
|
|
||
|
CV_DbgAssert(step >= minstep);
|
||
|
|
||
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
||
|
}
|
||
|
dataend += step * (rows - 1) + minstep;
|
||
|
}
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
|
||
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
|
||
|
step(step_), data((uchar*)data_), refcount(0),
|
||
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
||
|
{
|
||
|
size_t minstep = cols * elemSize();
|
||
|
|
||
|
if (step == Mat::AUTO_STEP)
|
||
|
{
|
||
|
step = minstep;
|
||
|
flags |= Mat::CONTINUOUS_FLAG;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rows == 1)
|
||
|
step = minstep;
|
||
|
|
||
|
CV_DbgAssert(step >= minstep);
|
||
|
|
||
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
||
|
}
|
||
|
dataend += step * (rows - 1) + minstep;
|
||
|
}
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange, Range colRange)
|
||
|
{
|
||
|
flags = m.flags;
|
||
|
step = m.step; refcount = m.refcount;
|
||
|
data = m.data; datastart = m.datastart; dataend = m.dataend;
|
||
|
|
||
|
if (rowRange == Range::all())
|
||
|
rows = m.rows;
|
||
|
else
|
||
|
{
|
||
|
CV_Assert(0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows);
|
||
|
|
||
|
rows = rowRange.size();
|
||
|
data += step*rowRange.start;
|
||
|
}
|
||
|
|
||
|
if (colRange == Range::all())
|
||
|
cols = m.cols;
|
||
|
else
|
||
|
{
|
||
|
CV_Assert(0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols);
|
||
|
|
||
|
cols = colRange.size();
|
||
|
data += colRange.start*elemSize();
|
||
|
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
||
|
}
|
||
|
|
||
|
if (rows == 1)
|
||
|
flags |= Mat::CONTINUOUS_FLAG;
|
||
|
|
||
|
if (refcount)
|
||
|
CV_XADD(refcount, 1);
|
||
|
|
||
|
if (rows <= 0 || cols <= 0)
|
||
|
rows = cols = 0;
|
||
|
}
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
|
||
|
flags(m.flags), rows(roi.height), cols(roi.width),
|
||
|
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
|
||
|
datastart(m.datastart), dataend(m.dataend)
|
||
|
{
|
||
|
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
||
|
data += roi.x * elemSize();
|
||
|
|
||
|
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);
|
||
|
|
||
|
if (refcount)
|
||
|
CV_XADD(refcount, 1);
|
||
|
|
||
|
if (rows <= 0 || cols <= 0)
|
||
|
rows = cols = 0;
|
||
|
}
|
||
|
|
||
|
cv::gpu::GpuMat::GpuMat(const Mat& m) :
|
||
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||
|
{
|
||
|
upload(m);
|
||
|
}
|
||
|
|
||
|
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
|
||
|
{
|
||
|
if (this != &m)
|
||
|
{
|
||
|
GpuMat temp(m);
|
||
|
swap(temp);
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::swap(GpuMat& b)
|
||
|
{
|
||
|
std::swap(flags, b.flags);
|
||
|
std::swap(rows, b.rows);
|
||
|
std::swap(cols, b.cols);
|
||
|
std::swap(step, b.step);
|
||
|
std::swap(data, b.data);
|
||
|
std::swap(datastart, b.datastart);
|
||
|
std::swap(dataend, b.dataend);
|
||
|
std::swap(refcount, b.refcount);
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
|
||
|
{
|
||
|
size_t esz = elemSize();
|
||
|
ptrdiff_t delta1 = data - datastart;
|
||
|
ptrdiff_t delta2 = dataend - datastart;
|
||
|
|
||
|
CV_DbgAssert(step > 0);
|
||
|
|
||
|
if (delta1 == 0)
|
||
|
ofs.x = ofs.y = 0;
|
||
|
else
|
||
|
{
|
||
|
ofs.y = static_cast<int>(delta1 / step);
|
||
|
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
|
||
|
|
||
|
CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
|
||
|
}
|
||
|
|
||
|
size_t minstep = (ofs.x + cols) * esz;
|
||
|
|
||
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
|
||
|
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
|
||
|
}
|
||
|
|
||
|
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
|
||
|
{
|
||
|
Size wholeSize;
|
||
|
Point ofs;
|
||
|
locateROI(wholeSize, ofs);
|
||
|
|
||
|
size_t esz = elemSize();
|
||
|
|
||
|
int row1 = std::max(ofs.y - dtop, 0);
|
||
|
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
||
|
|
||
|
int col1 = std::max(ofs.x - dleft, 0);
|
||
|
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
||
|
|
||
|
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
|
||
|
rows = row2 - row1;
|
||
|
cols = col2 - col1;
|
||
|
|
||
|
if (esz * cols == step || rows == 1)
|
||
|
flags |= Mat::CONTINUOUS_FLAG;
|
||
|
else
|
||
|
flags &= ~Mat::CONTINUOUS_FLAG;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
|
||
|
{
|
||
|
GpuMat hdr = *this;
|
||
|
|
||
|
int cn = channels();
|
||
|
if (new_cn == 0)
|
||
|
new_cn = cn;
|
||
|
|
||
|
int total_width = cols * cn;
|
||
|
|
||
|
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
|
||
|
new_rows = rows * total_width / new_cn;
|
||
|
|
||
|
if (new_rows != 0 && new_rows != rows)
|
||
|
{
|
||
|
int total_size = total_width * rows;
|
||
|
|
||
|
if (!isContinuous())
|
||
|
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
|
||
|
|
||
|
if ((unsigned)new_rows > (unsigned)total_size)
|
||
|
CV_Error(CV_StsOutOfRange, "Bad new number of rows");
|
||
|
|
||
|
total_width = total_size / new_rows;
|
||
|
|
||
|
if (total_width * new_rows != total_size)
|
||
|
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
|
||
|
|
||
|
hdr.rows = new_rows;
|
||
|
hdr.step = total_width * elemSize1();
|
||
|
}
|
||
|
|
||
|
int new_width = total_width / new_cn;
|
||
|
|
||
|
if (new_width * new_cn != total_width)
|
||
|
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
|
||
|
|
||
|
hdr.cols = new_width;
|
||
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
|
||
|
|
||
|
return hdr;
|
||
|
}
|
||
|
|
||
|
cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
||
|
{
|
||
|
m.download(*this);
|
||
|
}
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
void throw_nogpu()
|
||
|
{
|
||
|
CV_Error(CV_GpuNotSupported, "The library is compiled without GPU support");
|
||
|
}
|
||
|
|
||
|
class EmptyFuncTable : public GpuFuncTable
|
||
|
{
|
||
|
public:
|
||
|
void copy(const Mat&, GpuMat&) const { throw_nogpu(); }
|
||
|
void copy(const GpuMat&, Mat&) const { throw_nogpu(); }
|
||
|
void copy(const GpuMat&, GpuMat&) const { throw_nogpu(); }
|
||
|
|
||
|
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_nogpu(); }
|
||
|
|
||
|
void convert(const GpuMat&, GpuMat&) const { throw_nogpu(); }
|
||
|
void convert(const GpuMat&, GpuMat&, double, double) const { throw_nogpu(); }
|
||
|
|
||
|
void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_nogpu(); }
|
||
|
|
||
|
void mallocPitch(void**, size_t*, size_t, size_t) const { throw_nogpu(); }
|
||
|
void free(void*) const {}
|
||
|
};
|
||
|
|
||
|
const GpuFuncTable* g_funcTbl = 0;
|
||
|
|
||
|
const GpuFuncTable* gpuFuncTable()
|
||
|
{
|
||
|
static EmptyFuncTable empty;
|
||
|
return g_funcTbl ? g_funcTbl : ∅
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::gpu::setGpuFuncTable(const GpuFuncTable* funcTbl)
|
||
|
{
|
||
|
g_funcTbl = funcTbl;
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::upload(const Mat& m)
|
||
|
{
|
||
|
CV_DbgAssert(!m.empty());
|
||
|
|
||
|
create(m.size(), m.type());
|
||
|
|
||
|
gpuFuncTable()->copy(m, *this);
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::download(Mat& m) const
|
||
|
{
|
||
|
CV_DbgAssert(!empty());
|
||
|
|
||
|
m.create(size(), type());
|
||
|
|
||
|
gpuFuncTable()->copy(*this, m);
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::copyTo(GpuMat& m) const
|
||
|
{
|
||
|
CV_DbgAssert(!empty());
|
||
|
|
||
|
m.create(size(), type());
|
||
|
|
||
|
gpuFuncTable()->copy(*this, m);
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
|
||
|
{
|
||
|
if (mask.empty())
|
||
|
copyTo(mat);
|
||
|
else
|
||
|
{
|
||
|
mat.create(size(), type());
|
||
|
|
||
|
gpuFuncTable()->copyWithMask(*this, mat, mask);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
|
||
|
{
|
||
|
bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon();
|
||
|
|
||
|
if (rtype < 0)
|
||
|
rtype = type();
|
||
|
else
|
||
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
|
||
|
|
||
|
int sdepth = depth();
|
||
|
int ddepth = CV_MAT_DEPTH(rtype);
|
||
|
if (sdepth == ddepth && noScale)
|
||
|
{
|
||
|
copyTo(dst);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GpuMat temp;
|
||
|
const GpuMat* psrc = this;
|
||
|
if (sdepth != ddepth && psrc == &dst)
|
||
|
{
|
||
|
temp = *this;
|
||
|
psrc = &temp;
|
||
|
}
|
||
|
|
||
|
dst.create(size(), rtype);
|
||
|
|
||
|
if (noScale)
|
||
|
gpuFuncTable()->convert(*psrc, dst);
|
||
|
else
|
||
|
gpuFuncTable()->convert(*psrc, dst, alpha, beta);
|
||
|
}
|
||
|
|
||
|
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
|
||
|
{
|
||
|
CV_Assert(mask.empty() || mask.type() == CV_8UC1);
|
||
|
CV_DbgAssert(!empty());
|
||
|
|
||
|
gpuFuncTable()->setTo(*this, s, mask);
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
|
||
|
{
|
||
|
_type &= TYPE_MASK;
|
||
|
|
||
|
if (rows == _rows && cols == _cols && type() == _type && data)
|
||
|
return;
|
||
|
|
||
|
if (data)
|
||
|
release();
|
||
|
|
||
|
CV_DbgAssert(_rows >= 0 && _cols >= 0);
|
||
|
|
||
|
if (_rows > 0 && _cols > 0)
|
||
|
{
|
||
|
flags = Mat::MAGIC_VAL + _type;
|
||
|
rows = _rows;
|
||
|
cols = _cols;
|
||
|
|
||
|
size_t esz = elemSize();
|
||
|
|
||
|
void* devPtr;
|
||
|
gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);
|
||
|
|
||
|
// Single row must be continuous
|
||
|
if (rows == 1)
|
||
|
step = esz * cols;
|
||
|
|
||
|
if (esz * cols == step)
|
||
|
flags |= Mat::CONTINUOUS_FLAG;
|
||
|
|
||
|
int64 _nettosize = static_cast<int64>(step) * rows;
|
||
|
size_t nettosize = static_cast<size_t>(_nettosize);
|
||
|
|
||
|
datastart = data = static_cast<uchar*>(devPtr);
|
||
|
dataend = data + nettosize;
|
||
|
|
||
|
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
|
||
|
*refcount = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::gpu::GpuMat::release()
|
||
|
{
|
||
|
if (refcount && CV_XADD(refcount, -1) == 1)
|
||
|
{
|
||
|
fastFree(refcount);
|
||
|
|
||
|
gpuFuncTable()->free(datastart);
|
||
|
}
|
||
|
|
||
|
data = datastart = dataend = 0;
|
||
|
step = rows = cols = 0;
|
||
|
refcount = 0;
|
||
|
}
|