2020-12-02 04:42:15 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
# ifndef OPENCV_CALIB_HPP
# define OPENCV_CALIB_HPP
# include "opencv2/core.hpp"
# include "opencv2/features2d.hpp"
# include "opencv2/core/affine.hpp"
/**
@ defgroup calib Camera Calibration
The functions in this section use a so - called pinhole camera model . The view of a scene
is obtained by projecting a scene ' s 3 D point \ f $ P_w \ f $ into the image plane using a perspective
transformation which forms the corresponding pixel \ f $ p \ f $ . Both \ f $ P_w \ f $ and \ f $ p \ f $ are
represented in homogeneous coordinates , i . e . as 3 D and 2 D homogeneous vector respectively . You will
find a brief introduction to projective geometry , homogeneous vectors and homogeneous
transformations at the end of this section ' s introduction . For more succinct notation , we often drop
the ' homogeneous ' and say vector instead of homogeneous vector .
The distortion - free projective transformation given by a pinhole camera model is shown below .
\ f [ s \ ; p = A \ begin { bmatrix } R | t \ end { bmatrix } P_w , \ f ]
where \ f $ P_w \ f $ is a 3 D point expressed with respect to the world coordinate system ,
\ f $ p \ f $ is a 2 D pixel in the image plane , \ f $ A \ f $ is the camera intrinsic matrix ,
\ f $ R \ f $ and \ f $ t \ f $ are the rotation and translation that describe the change of coordinates from
world to camera coordinate systems ( or camera frame ) and \ f $ s \ f $ is the projective transformation ' s
arbitrary scaling and not part of the camera model .
The camera intrinsic matrix \ f $ A \ f $ ( notation used as in @ cite Zhang2000 and also generally notated
as \ f $ K \ f $ ) projects 3 D points given in the camera coordinate system to 2 D pixel coordinates , i . e .
\ f [ p = A P_c . \ f ]
The camera intrinsic matrix \ f $ A \ f $ is composed of the focal lengths \ f $ f_x \ f $ and \ f $ f_y \ f $ , which are
expressed in pixel units , and the principal point \ f $ ( c_x , c_y ) \ f $ , that is usually close to the
image center :
\ f [ A = \ vecthreethree { f_x } { 0 } { c_x } { 0 } { f_y } { c_y } { 0 } { 0 } { 1 } , \ f ]
and thus
\ f [ s \ vecthree { u } { v } { 1 } = \ vecthreethree { f_x } { 0 } { c_x } { 0 } { f_y } { c_y } { 0 } { 0 } { 1 } \ vecthree { X_c } { Y_c } { Z_c } . \ f ]
The matrix of intrinsic parameters does not depend on the scene viewed . So , once estimated , it can
be re - used as long as the focal length is fixed ( in case of a zoom lens ) . Thus , if an image from the
camera is scaled by a factor , all of these parameters need to be scaled ( multiplied / divided ,
respectively ) by the same factor .
The joint rotation - translation matrix \ f $ [ R | t ] \ f $ is the matrix product of a projective
transformation and a homogeneous transformation . The 3 - by - 4 projective transformation maps 3 D points
2021-04-09 18:30:38 +08:00
represented in camera coordinates to 2 D points in the image plane and represented in normalized
2020-12-02 04:42:15 +08:00
camera coordinates \ f $ x ' = X_c / Z_c \ f $ and \ f $ y ' = Y_c / Z_c \ f $ :
\ f [ Z_c \ begin { bmatrix }
x ' \ \
y ' \ \
1
\ end { bmatrix } = \ begin { bmatrix }
1 & 0 & 0 & 0 \ \
0 & 1 & 0 & 0 \ \
0 & 0 & 1 & 0
\ end { bmatrix }
\ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix } . \ f ]
The homogeneous transformation is encoded by the extrinsic parameters \ f $ R \ f $ and \ f $ t \ f $ and
represents the change of basis from world coordinate system \ f $ w \ f $ to the camera coordinate sytem
\ f $ c \ f $ . Thus , given the representation of the point \ f $ P \ f $ in world coordinates , \ f $ P_w \ f $ , we
obtain \ f $ P \ f $ ' s representation in the camera coordinate system , \ f $ P_c \ f $ , by
\ f [ P_c = \ begin { bmatrix }
R & t \ \
0 & 1
\ end { bmatrix } P_w , \ f ]
This homogeneous transformation is composed out of \ f $ R \ f $ , a 3 - by - 3 rotation matrix , and \ f $ t \ f $ , a
3 - by - 1 translation vector :
\ f [ \ begin { bmatrix }
R & t \ \
0 & 1
\ end { bmatrix } = \ begin { bmatrix }
r_ { 11 } & r_ { 12 } & r_ { 13 } & t_x \ \
r_ { 21 } & r_ { 22 } & r_ { 23 } & t_y \ \
r_ { 31 } & r_ { 32 } & r_ { 33 } & t_z \ \
0 & 0 & 0 & 1
\ end { bmatrix } ,
\ f ]
and therefore
\ f [ \ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix } = \ begin { bmatrix }
r_ { 11 } & r_ { 12 } & r_ { 13 } & t_x \ \
r_ { 21 } & r_ { 22 } & r_ { 23 } & t_y \ \
r_ { 31 } & r_ { 32 } & r_ { 33 } & t_z \ \
0 & 0 & 0 & 1
\ end { bmatrix }
\ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix } . \ f ]
Combining the projective transformation and the homogeneous transformation , we obtain the projective
transformation that maps 3 D points in world coordinates into 2 D points in the image plane and in
normalized camera coordinates :
\ f [ Z_c \ begin { bmatrix }
x ' \ \
y ' \ \
1
\ end { bmatrix } = \ begin { bmatrix } R | t \ end { bmatrix } \ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix } = \ begin { bmatrix }
r_ { 11 } & r_ { 12 } & r_ { 13 } & t_x \ \
r_ { 21 } & r_ { 22 } & r_ { 23 } & t_y \ \
r_ { 31 } & r_ { 32 } & r_ { 33 } & t_z
\ end { bmatrix }
\ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix } , \ f ]
with \ f $ x ' = X_c / Z_c \ f $ and \ f $ y ' = Y_c / Z_c \ f $ . Putting the equations for instrincs and extrinsics together , we can write out
\ f $ s \ ; p = A \ begin { bmatrix } R | t \ end { bmatrix } P_w \ f $ as
\ f [ s \ vecthree { u } { v } { 1 } = \ vecthreethree { f_x } { 0 } { c_x } { 0 } { f_y } { c_y } { 0 } { 0 } { 1 }
\ begin { bmatrix }
r_ { 11 } & r_ { 12 } & r_ { 13 } & t_x \ \
r_ { 21 } & r_ { 22 } & r_ { 23 } & t_y \ \
r_ { 31 } & r_ { 32 } & r_ { 33 } & t_z
\ end { bmatrix }
\ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix } . \ f ]
If \ f $ Z_c \ ne 0 \ f $ , the transformation above is equivalent to the following ,
\ f [ \ begin { bmatrix }
u \ \
v
\ end { bmatrix } = \ begin { bmatrix }
f_x X_c / Z_c + c_x \ \
f_y Y_c / Z_c + c_y
\ end { bmatrix } \ f ]
with
\ f [ \ vecthree { X_c } { Y_c } { Z_c } = \ begin { bmatrix }
R | t
\ end { bmatrix } \ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix } . \ f ]
The following figure illustrates the pinhole camera model .
! [ Pinhole camera model ] ( pics / pinhole_camera_model . png )
Real lenses usually have some distortion , mostly radial distortion , and slight tangential distortion .
So , the above model is extended as :
\ f [ \ begin { bmatrix }
u \ \
v
\ end { bmatrix } = \ begin { bmatrix }
f_x x ' ' + c_x \ \
f_y y ' ' + c_y
\ end { bmatrix } \ f ]
where
\ f [ \ begin { bmatrix }
x ' ' \ \
y ' '
\ end { bmatrix } = \ begin { bmatrix }
x ' \ frac { 1 + k_1 r ^ 2 + k_2 r ^ 4 + k_3 r ^ 6 } { 1 + k_4 r ^ 2 + k_5 r ^ 4 + k_6 r ^ 6 } + 2 p_1 x ' y ' + p_2 ( r ^ 2 + 2 x ' ^ 2 ) + s_1 r ^ 2 + s_2 r ^ 4 \ \
y ' \ frac { 1 + k_1 r ^ 2 + k_2 r ^ 4 + k_3 r ^ 6 } { 1 + k_4 r ^ 2 + k_5 r ^ 4 + k_6 r ^ 6 } + p_1 ( r ^ 2 + 2 y ' ^ 2 ) + 2 p_2 x ' y ' + s_3 r ^ 2 + s_4 r ^ 4 \ \
\ end { bmatrix } \ f ]
with
\ f [ r ^ 2 = x ' ^ 2 + y ' ^ 2 \ f ]
and
\ f [ \ begin { bmatrix }
x ' \ \
y '
\ end { bmatrix } = \ begin { bmatrix }
X_c / Z_c \ \
Y_c / Z_c
\ end { bmatrix } , \ f ]
if \ f $ Z_c \ ne 0 \ f $ .
The distortion parameters are the radial coefficients \ f $ k_1 \ f $ , \ f $ k_2 \ f $ , \ f $ k_3 \ f $ , \ f $ k_4 \ f $ , \ f $ k_5 \ f $ , and \ f $ k_6 \ f $
, \ f $ p_1 \ f $ and \ f $ p_2 \ f $ are the tangential distortion coefficients , and \ f $ s_1 \ f $ , \ f $ s_2 \ f $ , \ f $ s_3 \ f $ , and \ f $ s_4 \ f $ ,
are the thin prism distortion coefficients . Higher - order coefficients are not considered in OpenCV .
The next figures show two common types of radial distortion : barrel distortion
( \ f $ 1 + k_1 r ^ 2 + k_2 r ^ 4 + k_3 r ^ 6 \ f $ monotonically decreasing )
and pincushion distortion ( \ f $ 1 + k_1 r ^ 2 + k_2 r ^ 4 + k_3 r ^ 6 \ f $ monotonically increasing ) .
Radial distortion is always monotonic for real lenses ,
and if the estimator produces a non - monotonic result ,
this should be considered a calibration failure .
More generally , radial distortion must be monotonic and the distortion function must be bijective .
A failed estimation result may look deceptively good near the image center
but will work poorly in e . g . AR / SFM applications .
The optimization method used in OpenCV camera calibration does not include these constraints as
the framework does not support the required integer programming and polynomial inequalities .
See [ issue # 15992 ] ( https : //github.com/opencv/opencv/issues/15992) for additional information.
! [ ] ( pics / distortion_examples . png )
! [ ] ( pics / distortion_examples2 . png )
In some cases , the image sensor may be tilted in order to focus an oblique plane in front of the
camera ( Scheimpflug principle ) . This can be useful for particle image velocimetry ( PIV ) or
triangulation with a laser fan . The tilt causes a perspective distortion of \ f $ x ' ' \ f $ and
\ f $ y ' ' \ f $ . This distortion can be modeled in the following way , see e . g . @ cite Louhichi07 .
\ f [ \ begin { bmatrix }
u \ \
v
\ end { bmatrix } = \ begin { bmatrix }
f_x x ' ' ' + c_x \ \
f_y y ' ' ' + c_y
\ end { bmatrix } , \ f ]
where
\ f [ s \ vecthree { x ' ' ' } { y ' ' ' } { 1 } =
\ vecthreethree { R_ { 33 } ( \ tau_x , \ tau_y ) } { 0 } { - R_ { 13 } ( \ tau_x , \ tau_y ) }
{ 0 } { R_ { 33 } ( \ tau_x , \ tau_y ) } { - R_ { 23 } ( \ tau_x , \ tau_y ) }
{ 0 } { 0 } { 1 } R ( \ tau_x , \ tau_y ) \ vecthree { x ' ' } { y ' ' } { 1 } \ f ]
and the matrix \ f $ R ( \ tau_x , \ tau_y ) \ f $ is defined by two rotations with angular parameter
\ f $ \ tau_x \ f $ and \ f $ \ tau_y \ f $ , respectively ,
\ f [
R ( \ tau_x , \ tau_y ) =
\ vecthreethree { \ cos ( \ tau_y ) } { 0 } { - \ sin ( \ tau_y ) } { 0 } { 1 } { 0 } { \ sin ( \ tau_y ) } { 0 } { \ cos ( \ tau_y ) }
\ vecthreethree { 1 } { 0 } { 0 } { 0 } { \ cos ( \ tau_x ) } { \ sin ( \ tau_x ) } { 0 } { - \ sin ( \ tau_x ) } { \ cos ( \ tau_x ) } =
\ vecthreethree { \ cos ( \ tau_y ) } { \ sin ( \ tau_y ) \ sin ( \ tau_x ) } { - \ sin ( \ tau_y ) \ cos ( \ tau_x ) }
{ 0 } { \ cos ( \ tau_x ) } { \ sin ( \ tau_x ) }
{ \ sin ( \ tau_y ) } { - \ cos ( \ tau_y ) \ sin ( \ tau_x ) } { \ cos ( \ tau_y ) \ cos ( \ tau_x ) } .
\ f ]
In the functions below the coefficients are passed or returned as
\ f [ ( k_1 , k_2 , p_1 , p_2 [ , k_3 [ , k_4 , k_5 , k_6 [ , s_1 , s_2 , s_3 , s_4 [ , \ tau_x , \ tau_y ] ] ] ] ) \ f ]
vector . That is , if the vector contains four elements , it means that \ f $ k_3 = 0 \ f $ . The distortion
coefficients do not depend on the scene viewed . Thus , they also belong to the intrinsic camera
parameters . And they remain the same regardless of the captured image resolution . If , for example , a
camera has been calibrated on images of 320 x 240 resolution , absolutely the same distortion
coefficients can be used for 640 x 480 images from the same camera while \ f $ f_x \ f $ , \ f $ f_y \ f $ ,
\ f $ c_x \ f $ , and \ f $ c_y \ f $ need to be scaled appropriately .
The functions below use the above model to do the following :
- Project 3 D points to the image plane given intrinsic and extrinsic parameters .
- Compute extrinsic parameters given intrinsic parameters , a few 3 D points , and their
projections .
- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
pattern ( every view is described by several 3 D - 2 D point correspondences ) .
- Estimate the relative position and orientation of the stereo camera " heads " and compute the
* rectification * transformation that makes the camera optical axes parallel .
< B > Homogeneous Coordinates < / B > < br >
Homogeneous Coordinates are a system of coordinates that are used in projective geometry . Their use
allows to represent points at infinity by finite coordinates and simplifies formulas when compared
to the cartesian counterparts , e . g . they have the advantage that affine transformations can be
expressed as linear homogeneous transformation .
One obtains the homogeneous vector \ f $ P_h \ f $ by appending a 1 along an n - dimensional cartesian
vector \ f $ P \ f $ e . g . for a 3 D cartesian vector the mapping \ f $ P \ rightarrow P_h \ f $ is :
\ f [ \ begin { bmatrix }
X \ \
Y \ \
Z
\ end { bmatrix } \ rightarrow \ begin { bmatrix }
X \ \
Y \ \
Z \ \
1
\ end { bmatrix } . \ f ]
For the inverse mapping \ f $ P_h \ rightarrow P \ f $ , one divides all elements of the homogeneous vector
by its last element , e . g . for a 3 D homogeneous vector one gets its 2 D cartesian counterpart by :
\ f [ \ begin { bmatrix }
X \ \
Y \ \
W
\ end { bmatrix } \ rightarrow \ begin { bmatrix }
X / W \ \
Y / W
\ end { bmatrix } , \ f ]
if \ f $ W \ ne 0 \ f $ .
Due to this mapping , all multiples \ f $ k P_h \ f $ , for \ f $ k \ ne 0 \ f $ , of a homogeneous point represent
the same point \ f $ P_h \ f $ . An intuitive understanding of this property is that under a projective
transformation , all multiples of \ f $ P_h \ f $ are mapped to the same point . This is the physical
observation one does for pinhole cameras , as all points along a ray through the camera ' s pinhole are
projected to the same image point , e . g . all points along the red ray in the image of the pinhole
camera model above would be mapped to the same image coordinate . This property is also the source
for the scale ambiguity s in the equation of the pinhole camera model .
As mentioned , by using homogeneous coordinates we can express any change of basis parameterized by
\ f $ R \ f $ and \ f $ t \ f $ as a linear transformation , e . g . for the change of basis from coordinate system
0 to coordinate system 1 becomes :
\ f [ P_1 = R P_0 + t \ rightarrow P_ { h_1 } = \ begin { bmatrix }
R & t \ \
0 & 1
\ end { bmatrix } P_ { h_0 } . \ f ]
@ note
- Many functions in this module take a camera intrinsic matrix as an input parameter . Although all
functions assume the same structure of this parameter , they may name it differently . The
parameter ' s description , however , will be clear in that a camera intrinsic matrix with the structure
shown above is required .
- A calibration sample for 3 cameras in a horizontal position can be found at
opencv_source_code / samples / cpp / 3 calibration . cpp
- A calibration sample based on a sequence of images can be found at
opencv_source_code / samples / cpp / calibration . cpp
- A calibration sample in order to do 3 D reconstruction can be found at
opencv_source_code / samples / cpp / build3dmodel . cpp
- A calibration example on stereo calibration can be found at
opencv_source_code / samples / cpp / stereo_calib . cpp
- A calibration example on stereo matching can be found at
opencv_source_code / samples / cpp / stereo_match . cpp
- ( Python ) A camera calibration sample can be found at
opencv_source_code / samples / python / calibrate . py
@ {
@ defgroup calib3d_fisheye Fisheye camera model
Definitions : Let P be a point in 3 D of coordinates X in the world reference frame ( stored in the
matrix X ) The coordinate vector of P in the camera reference frame is :
\ f [ Xc = R X + T \ f ]
where R is the rotation matrix corresponding to the rotation vector om : R = rodrigues ( om ) ; call x , y
and z the 3 coordinates of Xc :
\ f [ x = Xc_1 \ \ y = Xc_2 \ \ z = Xc_3 \ f ]
The pinhole projection coordinates of P is [ a ; b ] where
\ f [ a = x / z \ and \ b = y / z \ \ r ^ 2 = a ^ 2 + b ^ 2 \ \ \ theta = atan ( r ) \ f ]
Fisheye distortion :
\ f [ \ theta_d = \ theta ( 1 + k_1 \ theta ^ 2 + k_2 \ theta ^ 4 + k_3 \ theta ^ 6 + k_4 \ theta ^ 8 ) \ f ]
The distorted point coordinates are [ x ' ; y ' ] where
\ f [ x ' = ( \ theta_d / r ) a \ \ y ' = ( \ theta_d / r ) b \ f ]
Finally , conversion into pixel coordinates : The final pixel coordinates vector [ u ; v ] where :
\ f [ u = f_x ( x ' + \ alpha y ' ) + c_x \ \
v = f_y y ' + c_y \ f ]
@ defgroup calib3d_c C API
@ }
*/
namespace cv {
//! @addtogroup calib
//! @{
enum { CALIB_CB_ADAPTIVE_THRESH = 1 ,
CALIB_CB_NORMALIZE_IMAGE = 2 ,
CALIB_CB_FILTER_QUADS = 4 ,
CALIB_CB_FAST_CHECK = 8 ,
CALIB_CB_EXHAUSTIVE = 16 ,
CALIB_CB_ACCURACY = 32 ,
CALIB_CB_LARGER = 64 ,
CALIB_CB_MARKER = 128
} ;
enum { CALIB_CB_SYMMETRIC_GRID = 1 ,
CALIB_CB_ASYMMETRIC_GRID = 2 ,
CALIB_CB_CLUSTERING = 4
} ;
enum { CALIB_NINTRINSIC = 18 ,
CALIB_USE_INTRINSIC_GUESS = 0x00001 ,
CALIB_FIX_ASPECT_RATIO = 0x00002 ,
CALIB_FIX_PRINCIPAL_POINT = 0x00004 ,
CALIB_ZERO_TANGENT_DIST = 0x00008 ,
CALIB_FIX_FOCAL_LENGTH = 0x00010 ,
CALIB_FIX_K1 = 0x00020 ,
CALIB_FIX_K2 = 0x00040 ,
CALIB_FIX_K3 = 0x00080 ,
CALIB_FIX_K4 = 0x00800 ,
CALIB_FIX_K5 = 0x01000 ,
CALIB_FIX_K6 = 0x02000 ,
CALIB_RATIONAL_MODEL = 0x04000 ,
CALIB_THIN_PRISM_MODEL = 0x08000 ,
CALIB_FIX_S1_S2_S3_S4 = 0x10000 ,
CALIB_TILTED_MODEL = 0x40000 ,
CALIB_FIX_TAUX_TAUY = 0x80000 ,
CALIB_USE_QR = 0x100000 , //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
CALIB_FIX_TANGENT_DIST = 0x200000 ,
// only for stereo
CALIB_FIX_INTRINSIC = 0x00100 ,
CALIB_SAME_FOCAL_LENGTH = 0x00200 ,
// for stereo rectification
CALIB_ZERO_DISPARITY = 0x00400 ,
CALIB_USE_LU = ( 1 < < 17 ) , //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
CALIB_USE_EXTRINSIC_GUESS = ( 1 < < 22 ) //!< for stereoCalibrate
} ;
enum HandEyeCalibrationMethod
{
CALIB_HAND_EYE_TSAI = 0 , //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
CALIB_HAND_EYE_PARK = 1 , //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
CALIB_HAND_EYE_HORAUD = 2 , //!< Hand-eye Calibration @cite Horaud95
CALIB_HAND_EYE_ANDREFF = 3 , //!< On-line Hand-Eye Calibration @cite Andreff99
CALIB_HAND_EYE_DANIILIDIS = 4 //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
} ;
enum RobotWorldHandEyeCalibrationMethod
{
CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0 , //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
CALIB_ROBOT_WORLD_HAND_EYE_LI = 1 //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
} ;
/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
@ param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space . In the old interface all the per - view vectors are concatenated . See
2021-06-13 18:14:17 +08:00
# calibrateCamera for details.
2020-12-02 04:42:15 +08:00
@ param imagePoints Vector of vectors of the projections of the calibration pattern points . In the
old interface all the per - view vectors are concatenated .
@ param imageSize Image size in pixels used to initialize the principal point .
@ param aspectRatio If it is zero or negative , both \ f $ f_x \ f $ and \ f $ f_y \ f $ are estimated independently .
Otherwise , \ f $ f_x = f_y * \ texttt { aspectRatio } \ f $ .
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process .
Currently , the function only supports planar calibration patterns , which are patterns where each
object point has z - coordinate = 0.
*/
CV_EXPORTS_W Mat initCameraMatrix2D ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints ,
Size imageSize , double aspectRatio = 1.0 ) ;
/** @brief Finds the positions of internal corners of the chessboard.
@ param image Source chessboard view . It must be an 8 - bit grayscale or color image .
@ param patternSize Number of inner corners per a chessboard row and column
( patternSize = cv : : Size ( points_per_row , points_per_colum ) = cv : : Size ( columns , rows ) ) .
@ param corners Output array of detected corners .
@ param flags Various operation flags that can be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
2020-12-02 04:42:15 +08:00
and white , rather than a fixed threshold level ( computed from the average image brightness ) .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before
2020-12-02 04:42:15 +08:00
applying fixed or adaptive thresholding .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_FILTER_QUADS Use additional criteria ( like contour area , perimeter ,
2020-12-02 04:42:15 +08:00
square - like shape ) to filter out false quads extracted at the contour retrieval stage .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners ,
2020-12-02 04:42:15 +08:00
and shortcut the call if none is found . This can drastically speed up the call in the
degenerate condition when no chessboard is observed .
The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners . The function returns a non - zero value if all of the corners
are found and they are placed in a certain order ( row by row , left to right in every row ) .
Otherwise , if the function fails to find all the corners or reorder them , it returns 0. For example ,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners , that is , points where the black
squares touch each other . The detected coordinates are approximate , and to determine their positions
more accurately , the function calls cornerSubPix . You also may use the function cornerSubPix with
different parameters if returned coordinates are not accurate enough .
Sample usage of detecting and drawing chessboard corners : :
@ code
Size patternsize ( 8 , 6 ) ; //interior number of corners
Mat gray = . . . . ; //source image
vector < Point2f > corners ; //this will be filled by the detected corners
//CALIB_CB_FAST_CHECK saves a lot of time on images
//that do not contain any chessboard corners
bool patternfound = findChessboardCorners ( gray , patternsize , corners ,
CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK ) ;
if ( patternfound )
cornerSubPix ( gray , corners , Size ( 11 , 11 ) , Size ( - 1 , - 1 ) ,
TermCriteria ( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER , 30 , 0.1 ) ) ;
drawChessboardCorners ( img , patternsize , Mat ( corners ) , patternfound ) ;
@ endcode
@ note The function requires white space ( like a square - thick border , the wider the better ) around
the board to make the detection more robust in various environments . Otherwise , if there is no
border and the background is dark , the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails .
2021-10-15 23:59:36 +08:00
Use gen_pattern . py ( @ ref tutorial_camera_calibration_pattern ) to create checkerboard .
2020-12-02 04:42:15 +08:00
*/
CV_EXPORTS_W bool findChessboardCorners ( InputArray image , Size patternSize , OutputArray corners ,
int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ) ;
/*
Checks whether the image contains chessboard of the specific size or not .
If yes , nonzero value is returned .
*/
CV_EXPORTS_W bool checkChessboard ( InputArray img , Size size ) ;
/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
@ param image Source chessboard view . It must be an 8 - bit grayscale or color image .
@ param patternSize Number of inner corners per a chessboard row and column
( patternSize = cv : : Size ( points_per_row , points_per_colum ) = cv : : Size ( columns , rows ) ) .
@ param corners Output array of detected corners .
@ param flags Various operation flags that can be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection .
- @ ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate .
- @ ref CALIB_CB_ACCURACY Up sample input image to improve sub - pixel accuracy due to aliasing effects .
- @ ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize ( see description ) .
- @ ref CALIB_CB_MARKER The detected pattern must have a marker ( see description ) .
2020-12-02 04:42:15 +08:00
This should be used if an accurate camera calibration is required .
@ param meta Optional output arrray of detected corners ( CV_8UC1 and size = cv : : Size ( columns , rows ) ) .
Each entry stands for one corner of the pattern and can have one of the following values :
- 0 = no meta data attached
- 1 = left - top corner of a black cell
- 2 = left - top corner of a white cell
- 3 = left - top corner of a black cell with a white marker dot
- 4 = left - top corner of a white cell with a black marker dot ( pattern origin in case of markers otherwise first corner )
2021-06-13 18:14:17 +08:00
The function is analog to # findChessboardCorners but uses a localized radon
2020-12-02 04:42:15 +08:00
transformation approximated by box filters being more robust to all sort of
noise , faster on larger images and is able to directly return the sub - pixel
position of the internal chessboard corners . The Method is based on the paper
@ cite duda2018 " Accurate Detection and Localization of Checkerboard Corners for
Calibration " demonstrating that the returned sub-pixel positions are more
accurate than the one returned by cornerSubPix allowing a precise camera
calibration for demanding applications .
2021-04-09 18:30:38 +08:00
In the case , the flags @ ref CALIB_CB_LARGER or @ ref CALIB_CB_MARKER are given ,
2020-12-02 04:42:15 +08:00
the result can be recovered from the optional meta array . Both flags are
helpful to use calibration patterns exceeding the field of view of the camera .
These oversized patterns allow more accurate calibrations as corners can be
utilized , which are as close as possible to the image borders . For a
consistent coordinate system across all images , the optional marker ( see image
below ) can be used to move the origin of the board to the location where the
black circle is located .
@ note The function requires a white boarder with roughly the same width as one
of the checkerboard fields around the whole board to improve the detection in
various environments . In addition , because of the localized radon
transformation it is beneficial to use round corners for the field corners
which are located on the outside of the board . The following figure illustrates
a sample checkerboard optimized for the detection . However , any other checkerboard
can be used as well .
2021-10-15 23:59:36 +08:00
Use gen_pattern . py ( @ ref tutorial_camera_calibration_pattern ) to create checkerboard .
2020-12-02 04:42:15 +08:00
! [ Checkerboard ] ( pics / checkerboard_radon . png )
*/
CV_EXPORTS_AS ( findChessboardCornersSBWithMeta )
bool findChessboardCornersSB ( InputArray image , Size patternSize , OutputArray corners ,
int flags , OutputArray meta ) ;
/** @overload */
CV_EXPORTS_W inline
bool findChessboardCornersSB ( InputArray image , Size patternSize , OutputArray corners ,
int flags = 0 )
{
return findChessboardCornersSB ( image , patternSize , corners , flags , noArray ( ) ) ;
}
/** @brief Estimates the sharpness of a detected chessboard.
Image sharpness , as well as brightness , are a critical parameter for accuracte
camera calibration . For accessing these parameters for filtering out
problematic calibraiton images , this method calculates edge profiles by traveling from
black to white chessboard cell centers . Based on this , the number of pixels is
calculated required to transit from black to white . This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~ 3.0 pixels .
@ param image Gray image used to find chessboard corners
@ param patternSize Size of a found chessboard pattern
2021-06-13 18:14:17 +08:00
@ param corners Corners found by # findChessboardCornersSB
2020-12-02 04:42:15 +08:00
@ param rise_distance Rise distance 0.8 means 10 % . . . 90 % of the final signal strength
@ param vertical By default edge responses for horizontal lines are calculated
@ param sharpness Optional output array with a sharpness value for calculated edge responses ( see description )
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries :
* 0 = x coordinate of the underlying edge in the image
* 1 = y coordinate of the underlying edge in the image
* 2 = width of the transition area ( sharpness )
* 3 = signal strength in the black cell ( min brightness )
* 4 = signal strength in the white cell ( max brightness )
@ return Scalar ( average sharpness , average min brightness , average max brightness , 0 )
*/
CV_EXPORTS_W Scalar estimateChessboardSharpness ( InputArray image , Size patternSize , InputArray corners ,
float rise_distance = 0.8F , bool vertical = false ,
OutputArray sharpness = noArray ( ) ) ;
//! finds subpixel-accurate positions of the chessboard corners
CV_EXPORTS_W bool find4QuadCornerSubpix ( InputArray img , InputOutputArray corners , Size region_size ) ;
/** @brief Renders the detected chessboard corners.
@ param image Destination image . It must be an 8 - bit color image .
@ param patternSize Number of inner corners per a chessboard row and column
( patternSize = cv : : Size ( points_per_row , points_per_column ) ) .
2021-06-13 18:14:17 +08:00
@ param corners Array of detected corners , the output of # findChessboardCorners .
2020-12-02 04:42:15 +08:00
@ param patternWasFound Parameter indicating whether the complete board was found or not . The
2021-06-13 18:14:17 +08:00
return value of # findChessboardCorners should be passed here .
2020-12-02 04:42:15 +08:00
The function draws individual chessboard corners detected either as red circles if the board was not
found , or as colored corners connected with lines if the board was found .
*/
CV_EXPORTS_W void drawChessboardCorners ( InputOutputArray image , Size patternSize ,
InputArray corners , bool patternWasFound ) ;
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
{
CV_WRAP CirclesGridFinderParameters ( ) ;
CV_PROP_RW cv : : Size2f densityNeighborhoodSize ;
CV_PROP_RW float minDensity ;
CV_PROP_RW int kmeansAttempts ;
CV_PROP_RW int minDistanceToAddKeypoint ;
CV_PROP_RW int keypointScale ;
CV_PROP_RW float minGraphConfidence ;
CV_PROP_RW float vertexGain ;
CV_PROP_RW float vertexPenalty ;
CV_PROP_RW float existingVertexGain ;
CV_PROP_RW float edgeGain ;
CV_PROP_RW float edgePenalty ;
CV_PROP_RW float convexHullFactor ;
CV_PROP_RW float minRNGEdgeSwitchDist ;
enum GridType
{
SYMMETRIC_GRID , ASYMMETRIC_GRID
} ;
GridType gridType ;
CV_PROP_RW float squareSize ; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
CV_PROP_RW float maxRectifiedDistance ; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
} ;
# ifndef DISABLE_OPENCV_3_COMPATIBILITY
typedef CirclesGridFinderParameters CirclesGridFinderParameters2 ;
# endif
/** @brief Finds centers in the grid of circles.
@ param image grid view of input circles ; it must be an 8 - bit grayscale or color image .
@ param patternSize number of circles per row and column
( patternSize = Size ( points_per_row , points_per_colum ) ) .
@ param centers output array of detected centers .
@ param flags various operation flags that can be one of the following values :
2021-04-09 18:30:38 +08:00
- @ ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles .
- @ ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles .
- @ ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection . It is more robust to
2020-12-02 04:42:15 +08:00
perspective distortions but much more sensitive to background clutter .
@ param blobDetector feature detector that finds blobs like dark circles on light background .
2021-04-09 18:30:38 +08:00
If ` blobDetector ` is NULL then ` image ` represents Point2f array of candidates .
2020-12-02 04:42:15 +08:00
@ param parameters struct for finding circles in a grid pattern .
The function attempts to determine whether the input image contains a grid of circles . If it is , the
function locates centers of the circles . The function returns a non - zero value if all of the centers
have been found and they have been placed in a certain order ( row by row , left to right in every
row ) . Otherwise , if the function fails to find all the corners or reorder them , it returns 0.
Sample usage of detecting and drawing the centers of circles : :
@ code
Size patternsize ( 7 , 7 ) ; //number of centers
2021-04-09 18:30:38 +08:00
Mat gray = . . . ; //source image
2020-12-02 04:42:15 +08:00
vector < Point2f > centers ; //this will be filled by the detected centers
bool patternfound = findCirclesGrid ( gray , patternsize , centers ) ;
drawChessboardCorners ( img , patternsize , Mat ( centers ) , patternfound ) ;
@ endcode
@ note The function requires white space ( like a square - thick border , the wider the better ) around
the board to make the detection more robust in various environments .
*/
CV_EXPORTS_W bool findCirclesGrid ( InputArray image , Size patternSize ,
OutputArray centers , int flags ,
const Ptr < FeatureDetector > & blobDetector ,
const CirclesGridFinderParameters & parameters ) ;
/** @overload */
CV_EXPORTS_W bool findCirclesGrid ( InputArray image , Size patternSize ,
OutputArray centers , int flags = CALIB_CB_SYMMETRIC_GRID ,
const Ptr < FeatureDetector > & blobDetector = SimpleBlobDetector : : create ( ) ) ;
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern .
@ param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space ( e . g . std : : vector < std : : vector < cv : : Vec3f > > ) . The outer
vector contains as many elements as the number of pattern views . If the same calibration pattern
is shown in each view and it is fully visible , all the vectors will be the same . Although , it is
possible to use partially occluded patterns or even different patterns in different views . Then ,
the vectors will be different . Although the points are 3 D , they all lie in the calibration pattern ' s
XY coordinate plane ( thus 0 in the Z - coordinate ) , if the used calibration pattern is a planar rig .
In the old interface all the vectors of object points from different views are concatenated
together .
@ param imagePoints In the new interface it is a vector of vectors of the projections of calibration
pattern points ( e . g . std : : vector < std : : vector < cv : : Vec2f > > ) . imagePoints . size ( ) and
objectPoints . size ( ) , and imagePoints [ i ] . size ( ) and objectPoints [ i ] . size ( ) for each i , must be equal ,
respectively . In the old interface all the vectors of object points from different views are
concatenated together .
@ param imageSize Size of the image used only to initialize the camera intrinsic matrix .
@ param cameraMatrix Input / output 3 x3 floating - point camera intrinsic matrix
2021-04-09 18:30:38 +08:00
\ f $ \ cameramatrix { A } \ f $ . If @ ref CALIB_USE_INTRINSIC_GUESS
2021-06-04 19:51:43 +08:00
and / or @ ref CALIB_FIX_ASPECT_RATIO , @ ref CALIB_FIX_PRINCIPAL_POINT or @ ref CALIB_FIX_FOCAL_LENGTH
are specified , some or all of fx , fy , cx , cy must be initialized before calling the function .
2020-12-02 04:42:15 +08:00
@ param distCoeffs Input / output vector of distortion coefficients
\ f $ \ distcoeffs \ f $ .
@ param rvecs Output vector of rotation vectors ( @ ref Rodrigues ) estimated for each pattern view
( e . g . std : : vector < cv : : Mat > > ) . That is , each i - th rotation vector together with the corresponding
i - th translation vector ( see the next output parameter description ) brings the calibration pattern
from the object coordinate space ( in which object points are specified ) to the camera coordinate
space . In more technical terms , the tuple of the i - th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space . Due to its duality , this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space .
@ param tvecs Output vector of translation vectors estimated for each pattern view , see parameter
describtion above .
@ param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
parameters . Order of deviations values :
\ f $ ( f_x , f_y , c_x , c_y , k_1 , k_2 , p_1 , p_2 , k_3 , k_4 , k_5 , k_6 , s_1 , s_2 , s_3 ,
s_4 , \ tau_x , \ tau_y ) \ f $ If one of parameters is not estimated , it ' s deviation is equals to zero .
@ param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
parameters . Order of deviations values : \ f $ ( R_0 , T_0 , \ dotsc , R_ { M - 1 } , T_ { M - 1 } ) \ f $ where M is
the number of pattern views . \ f $ R_i , T_i \ f $ are concatenated 1 x3 vectors .
@ param perViewErrors Output vector of the RMS re - projection error estimated for each pattern view .
@ param flags Different flags that may be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
2020-12-02 04:42:15 +08:00
fx , fy , cx , cy that are optimized further . Otherwise , ( cx , cy ) is initially set to the image
center ( imageSize is used ) , and focal distances are computed in a least - squares fashion .
Note , that if intrinsic parameters are known , there is no need to use this function just to
2021-06-04 19:51:43 +08:00
estimate extrinsic parameters . Use @ ref solvePnP instead .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
2020-12-02 04:42:15 +08:00
optimization . It stays at the center or at a different location specified when
2021-04-09 18:30:38 +08:00
@ ref CALIB_USE_INTRINSIC_GUESS is set too .
- @ ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter . The
2020-12-02 04:42:15 +08:00
ratio fx / fy stays the same as in the input cameraMatrix . When
2021-04-09 18:30:38 +08:00
@ ref CALIB_USE_INTRINSIC_GUESS is not set , the actual input values of fx and fy are
2020-12-02 04:42:15 +08:00
ignored , only their ratio is computed and used further .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \ f $ ( p_1 , p_2 ) \ f $ are set
2020-12-02 04:42:15 +08:00
to zeros and stay zero .
2021-06-04 19:51:43 +08:00
- @ ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
@ ref CALIB_USE_INTRINSIC_GUESS is set .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_K1 , . . . , @ ref CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is
2020-12-02 04:42:15 +08:00
set , the coefficient from the supplied distCoeffs matrix is used . Otherwise , it is set to 0.
2021-04-09 18:30:38 +08:00
- @ ref CALIB_RATIONAL_MODEL Coefficients k4 , k5 , and k6 are enabled . To provide the
2020-12-02 04:42:15 +08:00
backward compatibility , this extra flag should be explicitly specified to make the
2021-06-04 19:51:43 +08:00
calibration function use the rational model and return 8 coefficients or more .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_THIN_PRISM_MODEL Coefficients s1 , s2 , s3 and s4 are enabled . To provide the
2020-12-02 04:42:15 +08:00
backward compatibility , this extra flag should be explicitly specified to make the
2021-06-04 19:51:43 +08:00
calibration function use the thin prism model and return 12 coefficients or more .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is set , the coefficient from the
2020-12-02 04:42:15 +08:00
supplied distCoeffs matrix is used . Otherwise , it is set to 0.
2021-04-09 18:30:38 +08:00
- @ ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled . To provide the
2020-12-02 04:42:15 +08:00
backward compatibility , this extra flag should be explicitly specified to make the
2021-06-04 19:51:43 +08:00
calibration function use the tilted sensor model and return 14 coefficients .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is set , the coefficient from the
2020-12-02 04:42:15 +08:00
supplied distCoeffs matrix is used . Otherwise , it is set to 0.
@ param criteria Termination criteria for the iterative optimization algorithm .
@ return the overall RMS re - projection error .
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views . The algorithm is based on @ cite Zhang2000 and @ cite BouguetMCT . The coordinates of 3 D object
points and their corresponding 2 D projections in each view must be specified . That may be achieved
by using an object with known geometry and easily detectable feature points . Such an object is
called a calibration rig or calibration pattern , and OpenCV has built - in support for a chessboard as
a calibration rig ( see @ ref findChessboardCorners ) . Currently , initialization of intrinsic
2021-04-09 18:30:38 +08:00
parameters ( when @ ref CALIB_USE_INTRINSIC_GUESS is not set ) is only implemented for planar calibration
2020-12-02 04:42:15 +08:00
patterns ( where Z - coordinates of the object points must be all zeros ) . 3 D calibration rigs can also
be used as long as initial cameraMatrix is provided .
The algorithm performs the following steps :
- Compute the initial intrinsic parameters ( the option only available for planar calibration
patterns ) or read them from the input parameters . The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K ? are specified .
- Estimate the initial camera pose as if the intrinsic parameters have been already known . This is
2021-06-04 19:51:43 +08:00
done using @ ref solvePnP .
2020-12-02 04:42:15 +08:00
- Run the global Levenberg - Marquardt optimization algorithm to minimize the reprojection error ,
that is , the total sum of squared distances between the observed feature points imagePoints and
the projected ( using the current estimates for camera parameters and the poses ) object points
2021-06-04 19:51:43 +08:00
objectPoints . See @ ref projectPoints for details .
2020-12-02 04:42:15 +08:00
@ note
If you use a non - square ( i . e . non - N - by - N ) grid and @ ref findChessboardCorners for calibration ,
and @ ref calibrateCamera returns bad values ( zero distortion coefficients , \ f $ c_x \ f $ and
\ f $ c_y \ f $ very far from the image center , and / or large differences between \ f $ f_x \ f $ and
\ f $ f_y \ f $ ( ratios of 10 : 1 or more ) ) , then you are probably using patternSize = cvSize ( rows , cols )
instead of using patternSize = cvSize ( cols , rows ) in @ ref findChessboardCorners .
@ sa
calibrateCameraRO , findChessboardCorners , solvePnP , initCameraMatrix2D , stereoCalibrate ,
undistort
*/
CV_EXPORTS_AS ( calibrateCameraExtended ) double calibrateCamera ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints , Size imageSize ,
InputOutputArray cameraMatrix , InputOutputArray distCoeffs ,
OutputArrayOfArrays rvecs , OutputArrayOfArrays tvecs ,
OutputArray stdDeviationsIntrinsics ,
OutputArray stdDeviationsExtrinsics ,
OutputArray perViewErrors ,
int flags = 0 , TermCriteria criteria = TermCriteria (
2021-06-07 20:55:25 +08:00
TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
2020-12-02 04:42:15 +08:00
/** @overload */
CV_EXPORTS_W double calibrateCamera ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints , Size imageSize ,
InputOutputArray cameraMatrix , InputOutputArray distCoeffs ,
OutputArrayOfArrays rvecs , OutputArrayOfArrays tvecs ,
int flags = 0 , TermCriteria criteria = TermCriteria (
2021-06-07 20:55:25 +08:00
TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
2020-12-02 04:42:15 +08:00
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
2021-06-13 18:14:17 +08:00
This function is an extension of # calibrateCamera with the method of releasing object which was
2020-12-02 04:42:15 +08:00
proposed in @ cite strobl2011iccv . In many common cases with inaccurate , unmeasured , roughly planar
targets ( calibration plates ) , this method can dramatically improve the precision of the estimated
camera parameters . Both the object - releasing method and standard method are supported by this
function . Use the parameter * * iFixedPoint * * for method selection . In the internal implementation ,
2021-06-13 18:14:17 +08:00
# calibrateCamera is a wrapper for this function.
2020-12-02 04:42:15 +08:00
@ param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
2021-06-13 18:14:17 +08:00
coordinate space . See # calibrateCamera for details . If the method of releasing object to be used ,
2020-12-02 04:42:15 +08:00
the identical calibration board must be used in each view and it must be fully visible , and all
objectPoints [ i ] must be the same and all points should be roughly close to a plane . * * The calibration
target has to be rigid , or at least static if the camera ( rather than the calibration target ) is
shifted for grabbing images . * *
@ param imagePoints Vector of vectors of the projections of calibration pattern points . See
2021-06-13 18:14:17 +08:00
# calibrateCamera for details.
2020-12-02 04:42:15 +08:00
@ param imageSize Size of the image used only to initialize the intrinsic camera matrix .
@ param iFixedPoint The index of the 3 D object point in objectPoints [ 0 ] to be fixed . It also acts as
a switch for calibration method selection . If object - releasing method to be used , pass in the
parameter in the range of [ 1 , objectPoints [ 0 ] . size ( ) - 2 ] , otherwise a value out of this range will
make standard calibration method selected . Usually the top - right corner point of the calibration
board grid is recommended to be fixed when object - releasing method being utilized . According to
\ cite strobl2011iccv , two other points are also fixed . In this implementation , objectPoints [ 0 ] . front
and objectPoints [ 0 ] . back . z are used . With object - releasing method , accurate rvecs , tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough .
2021-06-13 18:14:17 +08:00
@ param cameraMatrix Output 3 x3 floating - point camera matrix . See # calibrateCamera for details .
@ param distCoeffs Output vector of distortion coefficients . See # calibrateCamera for details .
@ param rvecs Output vector of rotation vectors estimated for each pattern view . See # calibrateCamera
2020-12-02 04:42:15 +08:00
for details .
@ param tvecs Output vector of translation vectors estimated for each pattern view .
@ param newObjPoints The updated output vector of calibration pattern points . The coordinates might
be scaled based on three fixed points . The returned coordinates are accurate only if the above
mentioned three fixed points are accurate . If not needed , noArray ( ) can be passed in . This parameter
is ignored with standard calibration method .
@ param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters .
2021-06-13 18:14:17 +08:00
See # calibrateCamera for details .
2020-12-02 04:42:15 +08:00
@ param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters .
2021-06-13 18:14:17 +08:00
See # calibrateCamera for details .
2020-12-02 04:42:15 +08:00
@ param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
of calibration pattern points . It has the same size and order as objectPoints [ 0 ] vector . This
parameter is ignored with standard calibration method .
@ param perViewErrors Output vector of the RMS re - projection error estimated for each pattern view .
@ param flags Different flags that may be zero or a combination of some predefined values . See
2021-06-13 18:14:17 +08:00
# calibrateCamera for details. If the method of releasing object is used, the calibration time may
2020-12-02 04:42:15 +08:00
be much longer . CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases .
@ param criteria Termination criteria for the iterative optimization algorithm .
@ return the overall RMS re - projection error .
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views . The algorithm is based on @ cite Zhang2000 , @ cite BouguetMCT and @ cite strobl2011iccv . See
2021-06-13 18:14:17 +08:00
# calibrateCamera for other detailed explanations.
2020-12-02 04:42:15 +08:00
@ sa
calibrateCamera , findChessboardCorners , solvePnP , initCameraMatrix2D , stereoCalibrate , undistort
*/
CV_EXPORTS_AS ( calibrateCameraROExtended ) double calibrateCameraRO ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints , Size imageSize , int iFixedPoint ,
InputOutputArray cameraMatrix , InputOutputArray distCoeffs ,
OutputArrayOfArrays rvecs , OutputArrayOfArrays tvecs ,
OutputArray newObjPoints ,
OutputArray stdDeviationsIntrinsics ,
OutputArray stdDeviationsExtrinsics ,
OutputArray stdDeviationsObjPoints ,
OutputArray perViewErrors ,
int flags = 0 , TermCriteria criteria = TermCriteria (
2021-06-07 20:55:25 +08:00
TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
2020-12-02 04:42:15 +08:00
/** @overload */
CV_EXPORTS_W double calibrateCameraRO ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints , Size imageSize , int iFixedPoint ,
InputOutputArray cameraMatrix , InputOutputArray distCoeffs ,
OutputArrayOfArrays rvecs , OutputArrayOfArrays tvecs ,
OutputArray newObjPoints ,
int flags = 0 , TermCriteria criteria = TermCriteria (
2021-06-07 20:55:25 +08:00
TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
2020-12-02 04:42:15 +08:00
/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
2021-06-13 18:14:17 +08:00
@ param cameraMatrix Input camera intrinsic matrix that can be estimated by # calibrateCamera or
# stereoCalibrate .
2020-12-02 04:42:15 +08:00
@ param imageSize Input image size in pixels .
@ param apertureWidth Physical width in mm of the sensor .
@ param apertureHeight Physical height in mm of the sensor .
@ param fovx Output field of view in degrees along the horizontal sensor axis .
@ param fovy Output field of view in degrees along the vertical sensor axis .
@ param focalLength Focal length of the lens in mm .
@ param principalPoint Principal point in mm .
@ param aspectRatio \ f $ f_y / f_x \ f $
The function computes various useful camera characteristics from the previously estimated camera
matrix .
@ note
Do keep in mind that the unity measure ' mm ' stands for whatever unit of measure one chooses for
the chessboard pitch ( it can thus be any value ) .
*/
CV_EXPORTS_W void calibrationMatrixValues ( InputArray cameraMatrix , Size imageSize ,
double apertureWidth , double apertureHeight ,
CV_OUT double & fovx , CV_OUT double & fovy ,
CV_OUT double & focalLength , CV_OUT Point2d & principalPoint ,
CV_OUT double & aspectRatio ) ;
/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras .
@ param objectPoints Vector of vectors of the calibration pattern points . The same structure as
in @ ref calibrateCamera . For each pattern view , both cameras need to see the same object
points . Therefore , objectPoints . size ( ) , imagePoints1 . size ( ) , and imagePoints2 . size ( ) need to be
equal as well as objectPoints [ i ] . size ( ) , imagePoints1 [ i ] . size ( ) , and imagePoints2 [ i ] . size ( ) need to
be equal for each i .
@ param imagePoints1 Vector of vectors of the projections of the calibration pattern points ,
observed by the first camera . The same structure as in @ ref calibrateCamera .
@ param imagePoints2 Vector of vectors of the projections of the calibration pattern points ,
observed by the second camera . The same structure as in @ ref calibrateCamera .
@ param cameraMatrix1 Input / output camera intrinsic matrix for the first camera , the same as in
@ ref calibrateCamera . Furthermore , for the stereo case , additional flags may be used , see below .
@ param distCoeffs1 Input / output vector of distortion coefficients , the same as in
@ ref calibrateCamera .
@ param cameraMatrix2 Input / output second camera intrinsic matrix for the second camera . See description for
cameraMatrix1 .
@ param distCoeffs2 Input / output lens distortion coefficients for the second camera . See
description for distCoeffs1 .
@ param imageSize Size of the image used only to initialize the camera intrinsic matrices .
@ param R Output rotation matrix . Together with the translation vector T , this matrix brings
points given in the first camera ' s coordinate system to points in the second camera ' s
coordinate system . In more technical terms , the tuple of R and T performs a change of basis
from the first camera ' s coordinate system to the second camera ' s coordinate system . Due to its
duality , this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system .
@ param T Output translation vector , see description above .
@ param E Output essential matrix .
@ param F Output fundamental matrix .
@ param perViewErrors Output vector of the RMS re - projection error estimated for each pattern view .
@ param flags Different flags that may be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_INTRINSIC Fix cameraMatrix ? and distCoeffs ? so that only R , T , E , and F
2020-12-02 04:42:15 +08:00
matrices are estimated .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
2020-12-02 04:42:15 +08:00
according to the specified flags . Initial values are provided by the user .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further .
2020-12-02 04:42:15 +08:00
Otherwise R and T are initialized to the median value of the pattern views ( each dimension separately ) .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization .
- @ ref CALIB_FIX_FOCAL_LENGTH Fix \ f $ f ^ { ( j ) } _x \ f $ and \ f $ f ^ { ( j ) } _y \ f $ .
- @ ref CALIB_FIX_ASPECT_RATIO Optimize \ f $ f ^ { ( j ) } _y \ f $ . Fix the ratio \ f $ f ^ { ( j ) } _x / f ^ { ( j ) } _y \ f $
2020-12-02 04:42:15 +08:00
.
2021-04-09 18:30:38 +08:00
- @ ref CALIB_SAME_FOCAL_LENGTH Enforce \ f $ f ^ { ( 0 ) } _x = f ^ { ( 1 ) } _x \ f $ and \ f $ f ^ { ( 0 ) } _y = f ^ { ( 1 ) } _y \ f $ .
- @ ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
2020-12-02 04:42:15 +08:00
zeros and fix there .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_K1 , . . . , @ ref CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is set ,
2020-12-02 04:42:15 +08:00
the coefficient from the supplied distCoeffs matrix is used . Otherwise , it is set to 0.
2021-04-09 18:30:38 +08:00
- @ ref CALIB_RATIONAL_MODEL Enable coefficients k4 , k5 , and k6 . To provide the backward
2020-12-02 04:42:15 +08:00
compatibility , this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients . If the flag is not set , the
function computes and returns only 5 distortion coefficients .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_THIN_PRISM_MODEL Coefficients s1 , s2 , s3 and s4 are enabled . To provide the
2020-12-02 04:42:15 +08:00
backward compatibility , this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients . If the flag is not
set , the function computes and returns only 5 distortion coefficients .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is set , the coefficient from the
2020-12-02 04:42:15 +08:00
supplied distCoeffs matrix is used . Otherwise , it is set to 0.
2021-04-09 18:30:38 +08:00
- @ ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled . To provide the
2020-12-02 04:42:15 +08:00
backward compatibility , this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients . If the flag is not
set , the function computes and returns only 5 distortion coefficients .
2021-04-09 18:30:38 +08:00
- @ ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization . If @ ref CALIB_USE_INTRINSIC_GUESS is set , the coefficient from the
2020-12-02 04:42:15 +08:00
supplied distCoeffs matrix is used . Otherwise , it is set to 0.
@ param criteria Termination criteria for the iterative optimization algorithm .
The function estimates the transformation between two cameras making a stereo pair . If one computes
the poses of an object relative to the first camera and to the second camera ,
( \ f $ R_1 \ f $ , \ f $ T_1 \ f $ ) and ( \ f $ R_2 \ f $ , \ f $ T_2 \ f $ ) , respectively , for a stereo camera where the
relative position and orientation between the two cameras are fixed , then those poses definitely
relate to each other . This means , if the relative position and orientation ( \ f $ R \ f $ , \ f $ T \ f $ ) of the
two cameras is known , it is possible to compute ( \ f $ R_2 \ f $ , \ f $ T_2 \ f $ ) when ( \ f $ R_1 \ f $ , \ f $ T_1 \ f $ ) is
given . This is what the described function does . It computes ( \ f $ R \ f $ , \ f $ T \ f $ ) such that :
\ f [ R_2 = R R_1 \ f ]
\ f [ T_2 = R T_1 + T . \ f ]
Therefore , one can compute the coordinate representation of a 3 D point for the second camera ' s
coordinate system when given the point ' s coordinate representation in the first camera ' s coordinate
system :
\ f [ \ begin { bmatrix }
X_2 \ \
Y_2 \ \
Z_2 \ \
1
\ end { bmatrix } = \ begin { bmatrix }
R & T \ \
0 & 1
\ end { bmatrix } \ begin { bmatrix }
X_1 \ \
Y_1 \ \
Z_1 \ \
1
\ end { bmatrix } . \ f ]
Optionally , it computes the essential matrix E :
\ f [ E = \ vecthreethree { 0 } { - T_2 } { T_1 } { T_2 } { 0 } { - T_0 } { - T_1 } { T_0 } { 0 } R \ f ]
where \ f $ T_i \ f $ are components of the translation vector \ f $ T \ f $ : \ f $ T = [ T_0 , T_1 , T_2 ] ^ T \ f $ .
And the function can also compute the fundamental matrix F :
\ f [ F = cameraMatrix2 ^ { - T } \ cdot E \ cdot cameraMatrix1 ^ { - 1 } \ f ]
Besides the stereo - related information , the function can also perform a full calibration of each of
the two cameras . However , due to the high dimensionality of the parameter space and noise in the
input data , the function can diverge from the correct solution . If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually ( for example , using
2021-06-13 18:14:17 +08:00
# calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
2020-12-02 04:42:15 +08:00
function along with the computed intrinsic parameters . Otherwise , if all the parameters are
estimated at once , it makes sense to restrict some parameters , for example , pass
2021-04-09 18:30:38 +08:00
@ ref CALIB_SAME_FOCAL_LENGTH and @ ref CALIB_ZERO_TANGENT_DIST flags , which is usually a
2020-12-02 04:42:15 +08:00
reasonable assumption .
2021-06-13 18:14:17 +08:00
Similarly to # calibrateCamera , the function minimizes the total re - projection error for all the
2020-12-02 04:42:15 +08:00
points in all the available views from both cameras . The function returns the final value of the
re - projection error .
*/
CV_EXPORTS_AS ( stereoCalibrateExtended ) double stereoCalibrate ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints1 , InputArrayOfArrays imagePoints2 ,
InputOutputArray cameraMatrix1 , InputOutputArray distCoeffs1 ,
InputOutputArray cameraMatrix2 , InputOutputArray distCoeffs2 ,
Size imageSize , InputOutputArray R , InputOutputArray T , OutputArray E , OutputArray F ,
OutputArray perViewErrors , int flags = CALIB_FIX_INTRINSIC ,
2021-06-07 20:55:25 +08:00
TermCriteria criteria = TermCriteria ( TermCriteria : : COUNT + TermCriteria : : EPS , 100 , 1e-6 ) ) ;
2020-12-02 04:42:15 +08:00
/// @overload
CV_EXPORTS_W double stereoCalibrate ( InputArrayOfArrays objectPoints ,
InputArrayOfArrays imagePoints1 , InputArrayOfArrays imagePoints2 ,
InputOutputArray cameraMatrix1 , InputOutputArray distCoeffs1 ,
InputOutputArray cameraMatrix2 , InputOutputArray distCoeffs2 ,
Size imageSize , OutputArray R , OutputArray T , OutputArray E , OutputArray F ,
int flags = CALIB_FIX_INTRINSIC ,
2021-06-07 20:55:25 +08:00
TermCriteria criteria = TermCriteria ( TermCriteria : : COUNT + TermCriteria : : EPS , 100 , 1e-6 ) ) ;
2020-12-02 04:42:15 +08:00
/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
@ param [ in ] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame ( \ f $ _ { } ^ { b } \ textrm { T } _g \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the rotation , ` ( 3 x3 ) ` rotation matrices or ` ( 3 x1 ) ` rotation vectors ,
for all the transformations from gripper frame to robot base frame .
@ param [ in ] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame ( \ f $ _ { } ^ { b } \ textrm { T } _g \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the ` ( 3 x1 ) ` translation vectors for all the transformations
from gripper frame to robot base frame .
@ param [ in ] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _t \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the rotation , ` ( 3 x3 ) ` rotation matrices or ` ( 3 x1 ) ` rotation vectors ,
for all the transformations from calibration target frame to camera frame .
@ param [ in ] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _t \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the ` ( 3 x1 ) ` translation vectors for all the transformations
from calibration target frame to camera frame .
@ param [ out ] R_cam2gripper Estimated ` ( 3 x3 ) ` rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame ( \ f $ _ { } ^ { g } \ textrm { T } _c \ f $ ) .
@ param [ out ] t_cam2gripper Estimated ` ( 3 x1 ) ` translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame ( \ f $ _ { } ^ { g } \ textrm { T } _c \ f $ ) .
@ param [ in ] method One of the implemented Hand - Eye calibration method , see cv : : HandEyeCalibrationMethod
The function performs the Hand - Eye calibration using various methods . One approach consists in estimating the
rotation then the translation ( separable solutions ) and the following methods are implemented :
- R . Tsai , R . Lenz A New Technique for Fully Autonomous and Efficient 3 D Robotics Hand / EyeCalibration \ cite Tsai89
- F . Park , B . Martin Robot Sensor Calibration : Solving AX = XB on the Euclidean Group \ cite Park94
- R . Horaud , F . Dornaika Hand - Eye Calibration \ cite Horaud95
Another approach consists in estimating simultaneously the rotation and the translation ( simultaneous solutions ) ,
with the following implemented methods :
- N . Andreff , R . Horaud , B . Espiau On - line Hand - Eye Calibration \ cite Andreff99
- K . Daniilidis Hand - Eye Calibration Using Dual Quaternions \ cite Daniilidis98
The following picture describes the Hand - Eye calibration problem where the transformation between a camera ( " eye " )
mounted on a robot gripper ( " hand " ) has to be estimated . This configuration is called eye - in - hand .
The eye - to - hand configuration consists in a static camera observing a calibration pattern mounted on the robot
end - effector . The transformation from the camera to the robot base frame can then be estimated by inputting
the suitable transformations to the function , see below .
! [ ] ( pics / hand - eye_figure . png )
The calibration procedure is the following :
- a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
- the robot gripper is moved in order to acquire several poses
- for each pose , the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\ f [
\ begin { bmatrix }
X_b \ \
Y_b \ \
Z_b \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { b } \ textrm { R } _g & _ { } ^ { b } \ textrm { t } _g \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_g \ \
Y_g \ \
Z_g \ \
1
\ end { bmatrix }
\ f ]
- for each pose , the homogeneous transformation between the calibration target frame and the camera frame is recorded using
for instance a pose estimation method ( PnP ) from 2 D - 3 D point correspondences
\ f [
\ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { c } \ textrm { R } _t & _ { } ^ { c } \ textrm { t } _t \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_t \ \
Y_t \ \
Z_t \ \
1
\ end { bmatrix }
\ f ]
The Hand - Eye calibration procedure returns the following homogeneous transformation
\ f [
\ begin { bmatrix }
X_g \ \
Y_g \ \
Z_g \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { g } \ textrm { R } _c & _ { } ^ { g } \ textrm { t } _c \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix }
\ f ]
This problem is also known as solving the \ f $ \ mathbf { A } \ mathbf { X } = \ mathbf { X } \ mathbf { B } \ f $ equation :
- for an eye - in - hand configuration
\ f [
\ begin { align * }
^ { b } { \ textrm { T } _g } ^ { ( 1 ) } \ hspace { 0.2 em } ^ { g } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 1 ) } & =
\ hspace { 0.1 em } ^ { b } { \ textrm { T } _g } ^ { ( 2 ) } \ hspace { 0.2 em } ^ { g } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 2 ) } \ \
( ^ { b } { \ textrm { T } _g } ^ { ( 2 ) } ) ^ { - 1 } \ hspace { 0.2 em } ^ { b } { \ textrm { T } _g } ^ { ( 1 ) } \ hspace { 0.2 em } ^ { g } \ textrm { T } _c & =
\ hspace { 0.1 em } ^ { g } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 2 ) } ( ^ { c } { \ textrm { T } _t } ^ { ( 1 ) } ) ^ { - 1 } \ \
\ textrm { A } _i \ textrm { X } & = \ textrm { X } \ textrm { B } _i \ \
\ end { align * }
\ f ]
- for an eye - to - hand configuration
\ f [
\ begin { align * }
^ { g } { \ textrm { T } _b } ^ { ( 1 ) } \ hspace { 0.2 em } ^ { b } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 1 ) } & =
\ hspace { 0.1 em } ^ { g } { \ textrm { T } _b } ^ { ( 2 ) } \ hspace { 0.2 em } ^ { b } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 2 ) } \ \
( ^ { g } { \ textrm { T } _b } ^ { ( 2 ) } ) ^ { - 1 } \ hspace { 0.2 em } ^ { g } { \ textrm { T } _b } ^ { ( 1 ) } \ hspace { 0.2 em } ^ { b } \ textrm { T } _c & =
\ hspace { 0.1 em } ^ { b } \ textrm { T } _c \ hspace { 0.2 em } ^ { c } { \ textrm { T } _t } ^ { ( 2 ) } ( ^ { c } { \ textrm { T } _t } ^ { ( 1 ) } ) ^ { - 1 } \ \
\ textrm { A } _i \ textrm { X } & = \ textrm { X } \ textrm { B } _i \ \
\ end { align * }
\ f ]
\ note
Additional information can be found on this [ website ] ( http : //campar.in.tum.de/Chair/HandEyeCalibration).
\ note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand - eye transformation .
So at least 3 different poses are required , but it is strongly recommended to use many more poses .
*/
CV_EXPORTS void calibrateHandEye ( InputArrayOfArrays R_gripper2base , InputArrayOfArrays t_gripper2base ,
InputArrayOfArrays R_target2cam , InputArrayOfArrays t_target2cam ,
OutputArray R_cam2gripper , OutputArray t_cam2gripper ,
HandEyeCalibrationMethod method = CALIB_HAND_EYE_TSAI ) ;
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
@ param [ in ] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _w \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the rotation , ` ( 3 x3 ) ` rotation matrices or ` ( 3 x1 ) ` rotation vectors ,
for all the transformations from world frame to the camera frame .
@ param [ in ] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _w \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the ` ( 3 x1 ) ` translation vectors for all the transformations
from world frame to the camera frame .
@ param [ in ] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame ( \ f $ _ { } ^ { g } \ textrm { T } _b \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the rotation , ` ( 3 x3 ) ` rotation matrices or ` ( 3 x1 ) ` rotation vectors ,
for all the transformations from robot base frame to the gripper frame .
@ param [ in ] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame ( \ f $ _ { } ^ { g } \ textrm { T } _b \ f $ ) .
This is a vector ( ` vector < Mat > ` ) that contains the ` ( 3 x1 ) ` translation vectors for all the transformations
from robot base frame to the gripper frame .
@ param [ out ] R_base2world Estimated ` ( 3 x3 ) ` rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame ( \ f $ _ { } ^ { w } \ textrm { T } _b \ f $ ) .
@ param [ out ] t_base2world Estimated ` ( 3 x1 ) ` translation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame ( \ f $ _ { } ^ { w } \ textrm { T } _b \ f $ ) .
@ param [ out ] R_gripper2cam Estimated ` ( 3 x3 ) ` rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _g \ f $ ) .
@ param [ out ] t_gripper2cam Estimated ` ( 3 x1 ) ` translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame ( \ f $ _ { } ^ { c } \ textrm { T } _g \ f $ ) .
@ param [ in ] method One of the implemented Robot - World / Hand - Eye calibration method , see cv : : RobotWorldHandEyeCalibrationMethod
The function performs the Robot - World / Hand - Eye calibration using various methods . One approach consists in estimating the
rotation then the translation ( separable solutions ) :
- M . Shah , Solving the robot - world / hand - eye calibration problem using the kronecker product \ cite Shah2013SolvingTR
Another approach consists in estimating simultaneously the rotation and the translation ( simultaneous solutions ) ,
with the following implemented method :
- A . Li , L . Wang , and D . Wu , Simultaneous robot - world and hand - eye calibration using dual - quaternions and kronecker product \ cite Li2010SimultaneousRA
The following picture describes the Robot - World / Hand - Eye calibration problem where the transformations between a robot and a world frame
and between a robot gripper ( " hand " ) and a camera ( " eye " ) mounted at the robot end - effector have to be estimated .
! [ ] ( pics / robot - world_hand - eye_figure . png )
The calibration procedure is the following :
- a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
- the robot gripper is moved in order to acquire several poses
- for each pose , the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\ f [
\ begin { bmatrix }
X_g \ \
Y_g \ \
Z_g \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { g } \ textrm { R } _b & _ { } ^ { g } \ textrm { t } _b \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_b \ \
Y_b \ \
Z_b \ \
1
\ end { bmatrix }
\ f ]
- for each pose , the homogeneous transformation between the calibration target frame ( the world frame ) and the camera frame is recorded using
for instance a pose estimation method ( PnP ) from 2 D - 3 D point correspondences
\ f [
\ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { c } \ textrm { R } _w & _ { } ^ { c } \ textrm { t } _w \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix }
\ f ]
The Robot - World / Hand - Eye calibration procedure returns the following homogeneous transformations
\ f [
\ begin { bmatrix }
X_w \ \
Y_w \ \
Z_w \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { w } \ textrm { R } _b & _ { } ^ { w } \ textrm { t } _b \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_b \ \
Y_b \ \
Z_b \ \
1
\ end { bmatrix }
\ f ]
\ f [
\ begin { bmatrix }
X_c \ \
Y_c \ \
Z_c \ \
1
\ end { bmatrix }
=
\ begin { bmatrix }
_ { } ^ { c } \ textrm { R } _g & _ { } ^ { c } \ textrm { t } _g \ \
0 _ { 1 \ times 3 } & 1
\ end { bmatrix }
\ begin { bmatrix }
X_g \ \
Y_g \ \
Z_g \ \
1
\ end { bmatrix }
\ f ]
This problem is also known as solving the \ f $ \ mathbf { A } \ mathbf { X } = \ mathbf { Z } \ mathbf { B } \ f $ equation , with :
- \ f $ \ mathbf { A } \ Leftrightarrow \ hspace { 0.1 em } _ { } ^ { c } \ textrm { T } _w \ f $
- \ f $ \ mathbf { X } \ Leftrightarrow \ hspace { 0.1 em } _ { } ^ { w } \ textrm { T } _b \ f $
- \ f $ \ mathbf { Z } \ Leftrightarrow \ hspace { 0.1 em } _ { } ^ { c } \ textrm { T } _g \ f $
- \ f $ \ mathbf { B } \ Leftrightarrow \ hspace { 0.1 em } _ { } ^ { g } \ textrm { T } _b \ f $
\ note
At least 3 measurements are required ( input vectors size must be greater or equal to 3 ) .
*/
CV_EXPORTS void calibrateRobotWorldHandEye ( InputArrayOfArrays R_world2cam , InputArrayOfArrays t_world2cam ,
InputArrayOfArrays R_base2gripper , InputArrayOfArrays t_base2gripper ,
OutputArray R_base2world , OutputArray t_base2world ,
OutputArray R_gripper2cam , OutputArray t_gripper2cam ,
RobotWorldHandEyeCalibrationMethod method = CALIB_ROBOT_WORLD_HAND_EYE_SHAH ) ;
/** @brief The methods in this namespace use a so-called fisheye camera model.
@ ingroup calib3d_fisheye
*/
namespace fisheye
{
//! @addtogroup calib3d_fisheye
//! @{
enum {
CALIB_USE_INTRINSIC_GUESS = 1 < < 0 ,
CALIB_RECOMPUTE_EXTRINSIC = 1 < < 1 ,
CALIB_CHECK_COND = 1 < < 2 ,
CALIB_FIX_SKEW = 1 < < 3 ,
CALIB_FIX_K1 = 1 < < 4 ,
CALIB_FIX_K2 = 1 < < 5 ,
CALIB_FIX_K3 = 1 < < 6 ,
CALIB_FIX_K4 = 1 < < 7 ,
CALIB_FIX_INTRINSIC = 1 < < 8 ,
2021-04-09 18:30:38 +08:00
CALIB_FIX_PRINCIPAL_POINT = 1 < < 9 ,
CALIB_ZERO_DISPARITY = 1 < < 10 ,
CALIB_FIX_FOCAL_LENGTH = 1 < < 11
2020-12-02 04:42:15 +08:00
} ;
/** @brief Projects points using fisheye model
@ param objectPoints Array of object points , 1 xN / Nx1 3 - channel ( or vector \ < Point3f \ > ) , where N is
the number of points in the view .
@ param imagePoints Output array of image points , 2 xN / Nx2 1 - channel or 1 xN / Nx1 2 - channel , or
vector \ < Point2f \ > .
@ param affine
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param alpha The skew coefficient .
@ param jacobian Optional output 2 Nx15 jacobian matrix of derivatives of image points with respect
to components of the focal lengths , coordinates of the principal point , distortion coefficients ,
rotation vector , translation vector , and the skew . In the old interface different components of
the jacobian are returned via different output parameters .
The function computes projections of 3 D points to the image plane given intrinsic and extrinsic
camera parameters . Optionally , the function computes Jacobians - matrices of partial derivatives of
image points coordinates ( as functions of all the input parameters ) with respect to the particular
parameters , intrinsic and / or extrinsic .
*/
CV_EXPORTS void projectPoints ( InputArray objectPoints , OutputArray imagePoints , const Affine3d & affine ,
InputArray K , InputArray D , double alpha = 0 , OutputArray jacobian = noArray ( ) ) ;
/** @overload */
CV_EXPORTS_W void projectPoints ( InputArray objectPoints , OutputArray imagePoints , InputArray rvec , InputArray tvec ,
InputArray K , InputArray D , double alpha = 0 , OutputArray jacobian = noArray ( ) ) ;
/** @brief Distorts 2D points using fisheye model.
@ param undistorted Array of object points , 1 xN / Nx1 2 - channel ( or vector \ < Point2f \ > ) , where N is
the number of points in the view .
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param alpha The skew coefficient .
@ param distorted Output array of image points , 1 xN / Nx1 2 - channel , or vector \ < Point2f \ > .
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity .
This means if you want to transform back points undistorted with undistortPoints ( ) you have to
multiply them with \ f $ P ^ { - 1 } \ f $ .
*/
CV_EXPORTS_W void distortPoints ( InputArray undistorted , OutputArray distorted , InputArray K , InputArray D , double alpha = 0 ) ;
/** @brief Undistorts 2D points using fisheye model
@ param distorted Array of object points , 1 xN / Nx1 2 - channel ( or vector \ < Point2f \ > ) , where N is the
number of points in the view .
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param R Rectification transformation in the object space : 3 x3 1 - channel , or vector : 3 x1 / 1 x3
1 - channel or 1 x1 3 - channel
@ param P New camera intrinsic matrix ( 3 x3 ) or new projection matrix ( 3 x4 )
2022-04-24 05:42:17 +08:00
@ param criteria Termination criteria
2020-12-02 04:42:15 +08:00
@ param undistorted Output array of image points , 1 xN / Nx1 2 - channel , or vector \ < Point2f \ > .
*/
CV_EXPORTS_W void undistortPoints ( InputArray distorted , OutputArray undistorted ,
2022-04-24 05:42:17 +08:00
InputArray K , InputArray D , InputArray R = noArray ( ) , InputArray P = noArray ( ) ,
TermCriteria criteria = TermCriteria ( TermCriteria : : MAX_ITER + TermCriteria : : EPS , 10 , 1e-8 ) ) ;
2020-12-02 04:42:15 +08:00
/** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
distortion is used , if R or P is empty identity matrixes are used .
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param R Rectification transformation in the object space : 3 x3 1 - channel , or vector : 3 x1 / 1 x3
1 - channel or 1 x1 3 - channel
@ param P New camera intrinsic matrix ( 3 x3 ) or new projection matrix ( 3 x4 )
@ param size Undistorted image size .
@ param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps ( )
for details .
@ param map1 The first output map .
@ param map2 The second output map .
*/
CV_EXPORTS_W void initUndistortRectifyMap ( InputArray K , InputArray D , InputArray R , InputArray P ,
const cv : : Size & size , int m1type , OutputArray map1 , OutputArray map2 ) ;
/** @brief Transforms an image to compensate for fisheye lens distortion.
@ param distorted image with fisheye lens distortion .
@ param undistorted Output image with compensated fisheye lens distortion .
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param Knew Camera intrinsic matrix of the distorted image . By default , it is the identity matrix but you
may additionally scale and shift the result by using a different matrix .
@ param new_size the new size
The function transforms an image to compensate radial and tangential lens distortion .
The function is simply a combination of fisheye : : initUndistortRectifyMap ( with unity R ) and remap
( with bilinear interpolation ) . See the former function for details of the transformation being
performed .
See below the results of undistortImage .
- a \ ) result of undistort of perspective camera model ( all possible coefficients ( k_1 , k_2 , k_3 ,
k_4 , k_5 , k_6 ) of distortion were optimized under calibration )
- b \ ) result of fisheye : : undistortImage of fisheye camera model ( all possible coefficients ( k_1 , k_2 ,
k_3 , k_4 ) of fisheye distortion were optimized under calibration )
- c \ ) original image was captured with fisheye lens
Pictures a ) and b ) almost the same . But if we consider points of image located far from the center
of image , we can notice that on image a ) these points are distorted .
! [ image ] ( pics / fisheye_undistorted . jpg )
*/
CV_EXPORTS_W void undistortImage ( InputArray distorted , OutputArray undistorted ,
InputArray K , InputArray D , InputArray Knew = cv : : noArray ( ) , const Size & new_size = Size ( ) ) ;
/** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
@ param K Camera intrinsic matrix \ f $ cameramatrix { K } \ f $ .
@ param image_size Size of the image
@ param D Input vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param R Rectification transformation in the object space : 3 x3 1 - channel , or vector : 3 x1 / 1 x3
1 - channel or 1 x1 3 - channel
@ param P New camera intrinsic matrix ( 3 x3 ) or new projection matrix ( 3 x4 )
@ param balance Sets the new focal length in range between the min focal length and the max focal
length . Balance is in range of [ 0 , 1 ] .
@ param new_size the new size
@ param fov_scale Divisor for new focal length .
*/
CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify ( InputArray K , InputArray D , const Size & image_size , InputArray R ,
OutputArray P , double balance = 0.0 , const Size & new_size = Size ( ) , double fov_scale = 1.0 ) ;
/** @brief Performs camera calibaration
@ param objectPoints vector of vectors of calibration pattern points in the calibration pattern
coordinate space .
@ param imagePoints vector of vectors of the projections of calibration pattern points .
imagePoints . size ( ) and objectPoints . size ( ) and imagePoints [ i ] . size ( ) must be equal to
objectPoints [ i ] . size ( ) for each i .
@ param image_size Size of the image used only to initialize the camera intrinsic matrix .
@ param K Output 3 x3 floating - point camera intrinsic matrix
\ f $ \ cameramatrix { A } \ f $ . If
2021-04-09 18:30:38 +08:00
@ ref fisheye : : CALIB_USE_INTRINSIC_GUESS is specified , some or all of fx , fy , cx , cy must be
2020-12-02 04:42:15 +08:00
initialized before calling the function .
@ param D Output vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ .
@ param rvecs Output vector of rotation vectors ( see Rodrigues ) estimated for each pattern view .
That is , each k - th rotation vector together with the corresponding k - th translation vector ( see
the next output parameter description ) brings the calibration pattern from the model coordinate
space ( in which object points are specified ) to the world coordinate space , that is , a real
position of the calibration pattern in the k - th pattern view ( k = 0. . * M * - 1 ) .
@ param tvecs Output vector of translation vectors estimated for each pattern view .
@ param flags Different flags that may be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
2020-12-02 04:42:15 +08:00
fx , fy , cx , cy that are optimized further . Otherwise , ( cx , cy ) is initially set to the image
center ( imageSize is used ) , and focal distances are computed in a least - squares fashion .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
2020-12-02 04:42:15 +08:00
of intrinsic optimization .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_CHECK_COND The functions will check validity of condition number .
- @ ref fisheye : : CALIB_FIX_SKEW Skew coefficient ( alpha ) is set to zero and stay zero .
- @ ref fisheye : : CALIB_FIX_K1 , . . . , @ ref fisheye : : CALIB_FIX_K4 Selected distortion coefficients
2020-12-02 04:42:15 +08:00
are set to zeros and stay zero .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization . It stays at the center or at a different location specified when @ ref fisheye : : CALIB_USE_INTRINSIC_GUESS is set too .
- @ ref fisheye : : CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization . It is the \ f $ max ( width , height ) / \ pi \ f $ or the provided \ f $ f_x \ f $ , \ f $ f_y \ f $ when @ ref fisheye : : CALIB_USE_INTRINSIC_GUESS is set too .
2020-12-02 04:42:15 +08:00
@ param criteria Termination criteria for the iterative optimization algorithm .
*/
CV_EXPORTS_W double calibrate ( InputArrayOfArrays objectPoints , InputArrayOfArrays imagePoints , const Size & image_size ,
InputOutputArray K , InputOutputArray D , OutputArrayOfArrays rvecs , OutputArrayOfArrays tvecs , int flags = 0 ,
TermCriteria criteria = TermCriteria ( TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
/** @brief Stereo rectification for fisheye camera model
@ param K1 First camera intrinsic matrix .
@ param D1 First camera distortion parameters .
@ param K2 Second camera intrinsic matrix .
@ param D2 Second camera distortion parameters .
@ param imageSize Size of the image used for stereo calibration .
@ param R Rotation matrix between the coordinate systems of the first and the second
cameras .
@ param tvec Translation vector between coordinate systems of the cameras .
@ param R1 Output 3 x3 rectification transform ( rotation matrix ) for the first camera .
@ param R2 Output 3 x3 rectification transform ( rotation matrix ) for the second camera .
@ param P1 Output 3 x4 projection matrix in the new ( rectified ) coordinate systems for the first
camera .
@ param P2 Output 3 x4 projection matrix in the new ( rectified ) coordinate systems for the second
camera .
@ param Q Output \ f $ 4 \ times 4 \ f $ disparity - to - depth mapping matrix ( see reprojectImageTo3D ) .
2021-04-09 18:30:38 +08:00
@ param flags Operation flags that may be zero or @ ref fisheye : : CALIB_ZERO_DISPARITY . If the flag is set ,
2020-12-02 04:42:15 +08:00
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views . And if the flag is not set , the function may still shift the images in the
horizontal or vertical direction ( depending on the orientation of epipolar lines ) to maximize the
useful image area .
@ param newImageSize New image resolution after rectification . The same size should be passed to
initUndistortRectifyMap ( see the stereo_calib . cpp sample in OpenCV samples directory ) . When ( 0 , 0 )
is passed ( default ) , it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image , especially when there is a big radial distortion .
@ param balance Sets the new focal length in range between the min focal length and the max focal
length . Balance is in range of [ 0 , 1 ] .
@ param fov_scale Divisor for new focal length .
*/
CV_EXPORTS_W void stereoRectify ( InputArray K1 , InputArray D1 , InputArray K2 , InputArray D2 , const Size & imageSize , InputArray R , InputArray tvec ,
OutputArray R1 , OutputArray R2 , OutputArray P1 , OutputArray P2 , OutputArray Q , int flags , const Size & newImageSize = Size ( ) ,
double balance = 0.0 , double fov_scale = 1.0 ) ;
/** @brief Performs stereo calibration
@ param objectPoints Vector of vectors of the calibration pattern points .
@ param imagePoints1 Vector of vectors of the projections of the calibration pattern points ,
observed by the first camera .
@ param imagePoints2 Vector of vectors of the projections of the calibration pattern points ,
observed by the second camera .
@ param K1 Input / output first camera intrinsic matrix :
\ f $ \ vecthreethree { f_x ^ { ( j ) } } { 0 } { c_x ^ { ( j ) } } { 0 } { f_y ^ { ( j ) } } { c_y ^ { ( j ) } } { 0 } { 0 } { 1 } \ f $ , \ f $ j = 0 , \ , 1 \ f $ . If
2021-04-09 18:30:38 +08:00
any of @ ref fisheye : : CALIB_USE_INTRINSIC_GUESS , @ ref fisheye : : CALIB_FIX_INTRINSIC are specified ,
2020-12-02 04:42:15 +08:00
some or all of the matrix components must be initialized .
@ param D1 Input / output vector of distortion coefficients \ f $ \ distcoeffsfisheye \ f $ of 4 elements .
@ param K2 Input / output second camera intrinsic matrix . The parameter is similar to K1 .
@ param D2 Input / output lens distortion coefficients for the second camera . The parameter is
similar to D1 .
@ param imageSize Size of the image used only to initialize camera intrinsic matrix .
@ param R Output rotation matrix between the 1 st and the 2 nd camera coordinate systems .
@ param T Output translation vector between the coordinate systems of the cameras .
@ param flags Different flags that may be zero or a combination of the following values :
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_FIX_INTRINSIC Fix K1 , K2 ? and D1 , D2 ? so that only R , T matrices
2020-12-02 04:42:15 +08:00
are estimated .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_USE_INTRINSIC_GUESS K1 , K2 contains valid initial values of
2020-12-02 04:42:15 +08:00
fx , fy , cx , cy that are optimized further . Otherwise , ( cx , cy ) is initially set to the image
center ( imageSize is used ) , and focal distances are computed in a least - squares fashion .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
2020-12-02 04:42:15 +08:00
of intrinsic optimization .
2021-04-09 18:30:38 +08:00
- @ ref fisheye : : CALIB_CHECK_COND The functions will check validity of condition number .
- @ ref fisheye : : CALIB_FIX_SKEW Skew coefficient ( alpha ) is set to zero and stay zero .
- @ ref fisheye : : CALIB_FIX_K1 , . . . , @ ref fisheye : : CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
2020-12-02 04:42:15 +08:00
zero .
@ param criteria Termination criteria for the iterative optimization algorithm .
*/
CV_EXPORTS_W double stereoCalibrate ( InputArrayOfArrays objectPoints , InputArrayOfArrays imagePoints1 , InputArrayOfArrays imagePoints2 ,
InputOutputArray K1 , InputOutputArray D1 , InputOutputArray K2 , InputOutputArray D2 , Size imageSize ,
OutputArray R , OutputArray T , int flags = fisheye : : CALIB_FIX_INTRINSIC ,
TermCriteria criteria = TermCriteria ( TermCriteria : : COUNT + TermCriteria : : EPS , 100 , DBL_EPSILON ) ) ;
//! @} calib3d_fisheye
} //end namespace fisheye
} //end namespace cv
# endif