opencv/samples/octave/kalman.m

103 lines
3.3 KiB
Mathematica
Raw Normal View History

#! /usr/bin/env octave
## Tracking of rotating point.
## Rotation speed is constant.
## Both state and measurements vectors are 1D (a point angle),
## Measurement is the real point angle + gaussian noise.
## The real and the estimated points are connected with yellow line segment,
## the real and the measured points are connected with red line segment.
## (if Kalman filter works correctly,
## the yellow segment should be shorter than the red one).
## Pressing any key (except ESC) will reset the tracking with a different speed.
## Pressing ESC will stop the program.
cv;
highgui;
global img;
function ret=calc_point(angle)
global img;
ret=cvPoint( cvRound(img.width/2 + img.width/3*cos(angle)), \
cvRound(img.height/2 - img.width/3*sin(angle)));
endfunction
function draw_cross( center, color, d )
global img;
global CV_AA;
cvLine( img, cvPoint( center.x - d, center.y - d ),
cvPoint( center.x + d, center.y + d ), color, 1, CV_AA, 0);
cvLine( img, cvPoint( center.x + d, center.y - d ),
cvPoint( center.x - d, center.y + d ), \
color, 1, CV_AA, 0 );
endfunction
A = [ 1, 1; 0, 1 ];
img = cvCreateImage( cvSize(500,500), 8, 3 );
kalman = cvCreateKalman( 2, 1, 0 );
state = cvCreateMat( 2, 1, CV_32FC1 ); # (phi, delta_phi)
process_noise = cvCreateMat( 2, 1, CV_32FC1 );
measurement = cvCreateMat( 1, 1, CV_32FC1 );
rng = cvRNG(-1);
code = -1;
cvZero( measurement );
cvNamedWindow( "Kalman", 1 );
while (true),
cvRandArr( rng, state, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) );
kalman.transition_matrix = mat2cv(A, CV_32FC1);
cvSetIdentity( kalman.measurement_matrix, cvRealScalar(1) );
cvSetIdentity( kalman.process_noise_cov, cvRealScalar(1e-5) );
cvSetIdentity( kalman.measurement_noise_cov, cvRealScalar(1e-1) );
cvSetIdentity( kalman.error_cov_post, cvRealScalar(1));
cvRandArr( rng, kalman.state_post, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) );
while (true),
state_angle = state(0);
state_pt = calc_point(state_angle);
prediction = cvKalmanPredict( kalman );
predict_angle = prediction(0);
predict_pt = calc_point(predict_angle);
cvRandArr( rng, measurement, CV_RAND_NORMAL, cvRealScalar(0), \
cvRealScalar(sqrt(kalman.measurement_noise_cov(0))) );
## generate measurement
cvMatMulAdd( kalman.measurement_matrix, state, measurement, measurement );
measurement_angle = measurement(0);
measurement_pt = calc_point(measurement_angle);
## plot points
cvZero( img );
draw_cross( state_pt, CV_RGB(255,255,255), 3 );
draw_cross( measurement_pt, CV_RGB(255,0,0), 3 );
draw_cross( predict_pt, CV_RGB(0,255,0), 3 );
cvLine( img, state_pt, measurement_pt, CV_RGB(255,0,0), 3, CV_AA, 0 );
cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, CV_AA, 0 );
cvKalmanCorrect( kalman, measurement );
cvRandArr( rng, process_noise, CV_RAND_NORMAL, cvRealScalar(0), \
cvRealScalar(sqrt(kalman.process_noise_cov(0)(0))));
cvMatMulAdd( kalman.transition_matrix, state, process_noise, state );
cvShowImage( "Kalman", img );
code = cvWaitKey( 100 );
if( code > 0 )
break;
endif
endwhile
if( code == '\x1b' || code == 'q' || code == 'Q' )
break;
endif
endwhile
cvDestroyWindow("Kalman");