mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
133 lines
5.2 KiB
Markdown
133 lines
5.2 KiB
Markdown
|
# How to enable Halide backend for improve efficiency {#tutorial_dnn_halide}
|
||
|
|
||
|
## Introduction
|
||
|
This tutorial guidelines how to run your models in OpenCV deep learning module
|
||
|
using Halide language backend. Halide is an open-source project that let us
|
||
|
write image processing algorithms in well-readable format, schedule computations
|
||
|
according to specific device and evaluate it with a quite good efficiency.
|
||
|
|
||
|
An official website of the Halide project: http://halide-lang.org/.
|
||
|
|
||
|
## Efficiency comparison
|
||
|
Measured on Intel® Core™ i7-6700K CPU @ 4.00GHz x 8.
|
||
|
|
||
|
Single image forward pass (in milliseconds):
|
||
|
|
||
|
| Architecture | MKL backend | Halide backend | Speed Up ratio |
|
||
|
|-----------------:|------------:|---------------:|---------------:|
|
||
|
| AlexNet | 16.55 | 22.38 | x0.73 |
|
||
|
| ResNet-50 | 63.69 | 73.91 | x0.86 |
|
||
|
| SqueezeNet v1.1 | 10.11 | 8.21 | x1.23 |
|
||
|
| Inception-5h | 35.38 | 37.06 | x0.95 |
|
||
|
| ENet @ 3x512x256 | 82.26 | 41.21 | x1.99 |
|
||
|
|
||
|
Scheduling directives might be found @ [opencv_extra/testdata/dnn](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn).
|
||
|
|
||
|
## Requirements
|
||
|
### LLVM compiler
|
||
|
|
||
|
@note LLVM compilation might take a long time.
|
||
|
|
||
|
- Download LLVM source code from http://releases.llvm.org/4.0.0/llvm-4.0.0.src.tar.xz.
|
||
|
Unpack it. Let **llvm_root** is a root directory of source code.
|
||
|
|
||
|
- Create directory **llvm_root**/tools/clang
|
||
|
|
||
|
- Download Clang with the same version as LLVM. In our case it will be from
|
||
|
http://releases.llvm.org/4.0.0/cfe-4.0.0.src.tar.xz. Unpack it into
|
||
|
**llvm_root**/tools/clang. Note that it should be a root for Clang source code.
|
||
|
|
||
|
- Build LLVM on Linux
|
||
|
@code
|
||
|
cd llvm_root
|
||
|
mkdir build && cd build
|
||
|
cmake -DLLVM_ENABLE_TERMINFO=OFF -DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_ENABLE_ASSERTIONS=ON -DCMAKE_BUILD_TYPE=Release ..
|
||
|
make -j4
|
||
|
@endcode
|
||
|
|
||
|
- Build LLVM on Windows (Developer Command Prompt)
|
||
|
@code
|
||
|
mkdir \\path-to-llvm-build\\ && cd \\path-to-llvm-build\\
|
||
|
cmake.exe -DLLVM_ENABLE_TERMINFO=OFF -DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_ENABLE_ASSERTIONS=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=\\path-to-llvm-install\\ -G "Visual Studio 14 Win64" \\path-to-llvm-src\\
|
||
|
MSBuild.exe /m:4 /t:Build /p:Configuration=Release .\\INSTALL.vcxproj
|
||
|
@endcode
|
||
|
|
||
|
@note `\\path-to-llvm-build\\` and `\\path-to-llvm-install\\` are different directories.
|
||
|
|
||
|
### Halide language.
|
||
|
|
||
|
- Download source code from GitHub repository, https://github.com/halide/Halide
|
||
|
or using git. The root directory will be a **halide_root**.
|
||
|
@code
|
||
|
git clone https://github.com/halide/Halide.git
|
||
|
@endcode
|
||
|
|
||
|
- Build Halide on Linux
|
||
|
@code
|
||
|
cd halide_root
|
||
|
mkdir build && cd build
|
||
|
cmake -DLLVM_DIR=llvm_root/build/lib/cmake/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_VERSION=40 -DWITH_TESTS=OFF -DWITH_APPS=OFF -DWITH_TUTORIALS=OFF ..
|
||
|
make -j4
|
||
|
@endcode
|
||
|
|
||
|
- Build Halide on Windows (Developer Command Prompt)
|
||
|
@code
|
||
|
cd halide_root
|
||
|
mkdir build && cd build
|
||
|
cmake.exe -DLLVM_DIR=\\path-to-llvm-install\\lib\\cmake\\llvm -DLLVM_VERSION=40 -DWITH_TESTS=OFF -DWITH_APPS=OFF -DWITH_TUTORIALS=OFF -DCMAKE_BUILD_TYPE=Release -G "Visual Studio 14 Win64" ..
|
||
|
MSBuild.exe /m:4 /t:Build /p:Configuration=Release .\\ALL_BUILD.vcxproj
|
||
|
@endcode
|
||
|
|
||
|
## Build OpenCV with Halide backend
|
||
|
When you build OpenCV add the following configuration flags:
|
||
|
|
||
|
- `WITH_HALIDE` - enable Halide linkage
|
||
|
|
||
|
- `HALIDE_ROOT_DIR` - path to Halide build directory
|
||
|
|
||
|
How to build OpenCV with DNN module you may find in @ref tutorial_dnn_build.
|
||
|
|
||
|
## Sample
|
||
|
|
||
|
@include dnn/samples/squeezenet_halide.cpp
|
||
|
|
||
|
## Explanation
|
||
|
Download Caffe model from SqueezeNet repository: [train_val.prototxt](https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.1/train_val.prototxt) and [squeezenet_v1.1.caffemodel](https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel).
|
||
|
|
||
|
Also you need file with names of [ILSVRC2012](http://image-net.org/challenges/LSVRC/2012/browse-synsets) classes:
|
||
|
[synset_words.txt](https://raw.githubusercontent.com/ludv1x/opencv_contrib/master/modules/dnn/samples/synset_words.txt).
|
||
|
|
||
|
Put these files into working dir of this program example.
|
||
|
|
||
|
-# Read and initialize network using path to .prototxt and .caffemodel files
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Read and initialize network
|
||
|
|
||
|
-# Check that network was read successfully
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Check that network was read successfully
|
||
|
|
||
|
-# Read input image and convert to the 4-dimensional blob, acceptable by SqueezeNet v1.1
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Prepare blob
|
||
|
|
||
|
-# Pass the blob to the network
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Set input blob
|
||
|
|
||
|
-# Enable Halide backend for layers where it is implemented
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Enable Halide backend
|
||
|
|
||
|
-# Make forward pass
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Make forward pass
|
||
|
Remember that the first forward pass after initialization require quite more
|
||
|
time that the next ones. It's because of runtime compilation of Halide pipelines
|
||
|
at the first invocation.
|
||
|
|
||
|
-# Determine the best class
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Determine the best class
|
||
|
|
||
|
-# Print results
|
||
|
@snippet dnn/samples/squeezenet_halide.cpp Print results
|
||
|
For our image we get:
|
||
|
|
||
|
> Best class: #812 'space shuttle'
|
||
|
>
|
||
|
> Probability: 97.9812%
|