mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 17:59:13 +08:00
709 lines
23 KiB
C++
709 lines
23 KiB
C++
|
#include "precomp.hpp"
|
||
|
|
||
|
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0
|
||
|
|
||
|
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p)
|
||
|
{
|
||
|
return *(cvflann::IndexParams*)(p.params);
|
||
|
}
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
namespace flann
|
||
|
{
|
||
|
|
||
|
IndexParams::IndexParams()
|
||
|
{
|
||
|
params = new ::cvflann::IndexParams();
|
||
|
}
|
||
|
|
||
|
IndexParams::~IndexParams()
|
||
|
{
|
||
|
delete &get_params(*this);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
T getParam(const IndexParams& _p, const std::string& key, const T& defaultVal=T())
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(_p);
|
||
|
::cvflann::IndexParams::const_iterator it = p.find(key);
|
||
|
if( it == p.end() )
|
||
|
return defaultVal;
|
||
|
return it->second.cast<T>();
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void setParam(IndexParams& _p, const std::string& key, const T& value)
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(_p);
|
||
|
p[key] = value;
|
||
|
}
|
||
|
|
||
|
std::string IndexParams::getString(const std::string& key, const std::string& defaultVal) const
|
||
|
{
|
||
|
return getParam(*this, key, defaultVal);
|
||
|
}
|
||
|
|
||
|
int IndexParams::getInt(const std::string& key, int defaultVal) const
|
||
|
{
|
||
|
return getParam(*this, key, defaultVal);
|
||
|
}
|
||
|
|
||
|
double IndexParams::getDouble(const std::string& key, double defaultVal) const
|
||
|
{
|
||
|
return getParam(*this, key, defaultVal);
|
||
|
}
|
||
|
|
||
|
|
||
|
void IndexParams::setString(const std::string& key, const std::string& value)
|
||
|
{
|
||
|
setParam(*this, key, value);
|
||
|
}
|
||
|
|
||
|
void IndexParams::setInt(const std::string& key, int value)
|
||
|
{
|
||
|
setParam(*this, key, value);
|
||
|
}
|
||
|
|
||
|
void IndexParams::setDouble(const std::string& key, double value)
|
||
|
{
|
||
|
setParam(*this, key, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
void IndexParams::getAll(std::vector<std::string>& names,
|
||
|
std::vector<int>& types,
|
||
|
std::vector<std::string>& strValues,
|
||
|
std::vector<double>& numValues) const
|
||
|
{
|
||
|
names.clear();
|
||
|
types.clear();
|
||
|
strValues.clear();
|
||
|
numValues.clear();
|
||
|
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end();
|
||
|
|
||
|
for( ; it != it_end; ++it )
|
||
|
{
|
||
|
names.push_back(it->first);
|
||
|
try
|
||
|
{
|
||
|
std::string val = it->second.cast<std::string>();
|
||
|
types.push_back(CV_USRTYPE1);
|
||
|
strValues.push_back(val);
|
||
|
numValues.push_back(-1);
|
||
|
}
|
||
|
catch (...)
|
||
|
{
|
||
|
try
|
||
|
{
|
||
|
double val = it->second.cast<double>();
|
||
|
strValues.push_back(std::string());
|
||
|
types.push_back( val == saturate_cast<int>(val) ? CV_32S : CV_64F );
|
||
|
numValues.push_back(val);
|
||
|
}
|
||
|
catch( ... )
|
||
|
{
|
||
|
types.push_back(-1); // unknown type
|
||
|
strValues.push_back(std::string());
|
||
|
numValues.push_back(-1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
KDTreeIndexParams::KDTreeIndexParams(int trees)
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_KDTREE;
|
||
|
p["trees"] = trees;
|
||
|
}
|
||
|
|
||
|
LinearIndexParams::LinearIndexParams()
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_LINEAR;
|
||
|
}
|
||
|
|
||
|
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations,
|
||
|
flann_centers_init_t centers_init, float cb_index )
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_KMEANS;
|
||
|
// number of randomized trees to use (for kdtree)
|
||
|
p["trees"] = trees;
|
||
|
// branching factor
|
||
|
p["branching"] = branching;
|
||
|
// max iterations to perform in one kmeans clustering (kmeans tree)
|
||
|
p["iterations"] = iterations;
|
||
|
// algorithm used for picking the initial cluster centers for kmeans tree
|
||
|
p["centers_init"] = centers_init;
|
||
|
// cluster boundary index. Used when searching the kmeans tree
|
||
|
p["cb_index"] = cb_index;
|
||
|
}
|
||
|
|
||
|
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight,
|
||
|
float memory_weight, float sample_fraction)
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_AUTOTUNED;
|
||
|
// precision desired (used for autotuning, -1 otherwise)
|
||
|
p["target_precision"] = target_precision;
|
||
|
// build tree time weighting factor
|
||
|
p["build_weight"] = build_weight;
|
||
|
// index memory weighting factor
|
||
|
p["memory_weight"] = memory_weight;
|
||
|
// what fraction of the dataset to use for autotuning
|
||
|
p["sample_fraction"] = sample_fraction;
|
||
|
}
|
||
|
|
||
|
|
||
|
KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
|
||
|
flann_centers_init_t centers_init, float cb_index )
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_KMEANS;
|
||
|
// branching factor
|
||
|
p["branching"] = branching;
|
||
|
// max iterations to perform in one kmeans clustering (kmeans tree)
|
||
|
p["iterations"] = iterations;
|
||
|
// algorithm used for picking the initial cluster centers for kmeans tree
|
||
|
p["centers_init"] = centers_init;
|
||
|
// cluster boundary index. Used when searching the kmeans tree
|
||
|
p["cb_index"] = cb_index;
|
||
|
}
|
||
|
|
||
|
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
p["algorithm"] = FLANN_INDEX_LSH;
|
||
|
// The number of hash tables to use
|
||
|
p["table_number"] = (unsigned)table_number;
|
||
|
// The length of the key in the hash tables
|
||
|
p["key_size"] = (unsigned)key_size;
|
||
|
// Number of levels to use in multi-probe (0 for standard LSH)
|
||
|
p["multi_probe_level"] = (unsigned)multi_probe_level;
|
||
|
}
|
||
|
|
||
|
SavedIndexParams::SavedIndexParams(const std::string& _filename)
|
||
|
{
|
||
|
std::string filename = _filename;
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
|
||
|
p["algorithm"] = FLANN_INDEX_SAVED;
|
||
|
p["filename"] = filename;
|
||
|
}
|
||
|
|
||
|
SearchParams::SearchParams( int checks, float eps, bool sorted )
|
||
|
{
|
||
|
::cvflann::IndexParams& p = get_params(*this);
|
||
|
|
||
|
// how many leafs to visit when searching for neighbours (-1 for unlimited)
|
||
|
p["checks"] = checks;
|
||
|
// search for eps-approximate neighbours (default: 0)
|
||
|
p["eps"] = eps;
|
||
|
// only for radius search, require neighbours sorted by distance (default: true)
|
||
|
p["sorted"] = sorted;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename Distance, typename IndexType> void
|
||
|
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
|
||
|
{
|
||
|
typedef typename Distance::ElementType ElementType;
|
||
|
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
|
||
|
|
||
|
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
|
||
|
IndexType* _index = new IndexType(dataset, get_params(params), dist);
|
||
|
_index->buildIndex();
|
||
|
index = _index;
|
||
|
}
|
||
|
|
||
|
template<typename Distance> void
|
||
|
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
|
||
|
{
|
||
|
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist);
|
||
|
}
|
||
|
|
||
|
typedef ::cvflann::HammingLUT HammingDistance;
|
||
|
typedef ::cvflann::LshIndex<HammingDistance> LshIndex;
|
||
|
|
||
|
Index::Index()
|
||
|
{
|
||
|
index = 0;
|
||
|
featureType = CV_32F;
|
||
|
algo = FLANN_INDEX_LINEAR;
|
||
|
distType = FLANN_DIST_L2;
|
||
|
}
|
||
|
|
||
|
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType)
|
||
|
{
|
||
|
index = 0;
|
||
|
featureType = CV_32F;
|
||
|
algo = FLANN_INDEX_LINEAR;
|
||
|
distType = FLANN_DIST_L2;
|
||
|
build(_data, params, _distType);
|
||
|
}
|
||
|
|
||
|
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType)
|
||
|
{
|
||
|
release();
|
||
|
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR);
|
||
|
if( algo == FLANN_INDEX_SAVED )
|
||
|
{
|
||
|
load(_data, getParam<std::string>(params, "filename", std::string()));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Mat data = _data.getMat();
|
||
|
index = 0;
|
||
|
featureType = data.type();
|
||
|
distType = _distType;
|
||
|
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
{
|
||
|
buildIndex_<HammingDistance, LshIndex>(index, data, params);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
buildIndex< ::cvflann::L2<float> >(index, data, params);
|
||
|
break;
|
||
|
case FLANN_DIST_L1:
|
||
|
buildIndex< ::cvflann::L1<float> >(index, data, params);
|
||
|
break;
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
|
||
|
break;
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params);
|
||
|
break;
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params);
|
||
|
break;
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params);
|
||
|
break;
|
||
|
case FLANN_DIST_KL:
|
||
|
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename IndexType> void deleteIndex_(void* index)
|
||
|
{
|
||
|
delete (IndexType*)index;
|
||
|
}
|
||
|
|
||
|
template<typename Distance> void deleteIndex(void* index)
|
||
|
{
|
||
|
deleteIndex_< ::cvflann::Index<Distance> >(index);
|
||
|
}
|
||
|
|
||
|
Index::~Index()
|
||
|
{
|
||
|
release();
|
||
|
}
|
||
|
|
||
|
void Index::release()
|
||
|
{
|
||
|
if( !index )
|
||
|
return;
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
{
|
||
|
deleteIndex_<LshIndex>(index);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CV_Assert( featureType == CV_32F );
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
deleteIndex< ::cvflann::L2<float> >(index);
|
||
|
break;
|
||
|
case FLANN_DIST_L1:
|
||
|
deleteIndex< ::cvflann::L1<float> >(index);
|
||
|
break;
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
deleteIndex< ::cvflann::MaxDistance<float> >(index);
|
||
|
break;
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index);
|
||
|
break;
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
deleteIndex< ::cvflann::HellingerDistance<float> >(index);
|
||
|
break;
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index);
|
||
|
break;
|
||
|
case FLANN_DIST_KL:
|
||
|
deleteIndex< ::cvflann::KL_Divergence<float> >(index);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||
|
}
|
||
|
}
|
||
|
index = 0;
|
||
|
}
|
||
|
|
||
|
template<typename Distance, typename IndexType>
|
||
|
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||
|
int knn, const SearchParams& params)
|
||
|
{
|
||
|
typedef typename Distance::ElementType ElementType;
|
||
|
typedef typename Distance::ResultType DistanceType;
|
||
|
int type = DataType<ElementType>::type;
|
||
|
int dtype = DataType<DistanceType>::type;
|
||
|
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
|
||
|
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
|
||
|
|
||
|
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
|
||
|
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
|
||
|
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
|
||
|
|
||
|
((IndexType*)index)->knnSearch(_query, _indices, _dists, knn,
|
||
|
(const ::cvflann::SearchParams&)get_params(params));
|
||
|
}
|
||
|
|
||
|
template<typename Distance>
|
||
|
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||
|
int knn, const SearchParams& params)
|
||
|
{
|
||
|
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params);
|
||
|
}
|
||
|
|
||
|
template<typename Distance, typename IndexType>
|
||
|
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||
|
double radius, const SearchParams& params)
|
||
|
{
|
||
|
typedef typename Distance::ElementType ElementType;
|
||
|
typedef typename Distance::ResultType DistanceType;
|
||
|
int type = DataType<ElementType>::type;
|
||
|
int dtype = DataType<DistanceType>::type;
|
||
|
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
|
||
|
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
|
||
|
|
||
|
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
|
||
|
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
|
||
|
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
|
||
|
|
||
|
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists,
|
||
|
saturate_cast<DistanceType>(radius),
|
||
|
(const ::cvflann::SearchParams&)get_params(params));
|
||
|
}
|
||
|
|
||
|
template<typename Distance>
|
||
|
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
|
||
|
double radius, const SearchParams& params)
|
||
|
{
|
||
|
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void createIndicesDists(OutputArray _indices, OutputArray _dists,
|
||
|
Mat& indices, Mat& dists, int rows,
|
||
|
int minCols, int maxCols, int dtype)
|
||
|
{
|
||
|
if( _indices.needed() )
|
||
|
{
|
||
|
indices = _indices.getMat();
|
||
|
if( !indices.isContinuous() || indices.type() != CV_32S ||
|
||
|
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols )
|
||
|
{
|
||
|
if( !indices.isContinuous() )
|
||
|
_indices.release();
|
||
|
_indices.create( rows, minCols, CV_32S );
|
||
|
indices = _indices.getMat();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
indices.create( rows, minCols, CV_32S );
|
||
|
|
||
|
if( _dists.needed() )
|
||
|
{
|
||
|
dists = _dists.getMat();
|
||
|
if( !dists.isContinuous() || dists.type() != dtype ||
|
||
|
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols )
|
||
|
{
|
||
|
if( !indices.isContinuous() )
|
||
|
_dists.release();
|
||
|
_dists.create( rows, minCols, dtype );
|
||
|
dists = _dists.getMat();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
dists.create( rows, minCols, dtype );
|
||
|
}
|
||
|
|
||
|
|
||
|
void Index::knnSearch(InputArray _query, OutputArray _indices,
|
||
|
OutputArray _dists, int knn, const SearchParams& params)
|
||
|
{
|
||
|
Mat query = _query.getMat(), indices, dists;
|
||
|
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||
|
|
||
|
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
|
||
|
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
{
|
||
|
runKnnSearch_<HammingDistance, LshIndex>(index, query, indices, dists, knn, params);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
case FLANN_DIST_L1:
|
||
|
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
case FLANN_DIST_KL:
|
||
|
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int Index::radiusSearch(InputArray _query, OutputArray _indices,
|
||
|
OutputArray _dists, double radius, int maxResults,
|
||
|
const SearchParams& params)
|
||
|
{
|
||
|
Mat query = _query.getMat(), indices, dists;
|
||
|
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
|
||
|
CV_Assert( maxResults > 0 );
|
||
|
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
|
||
|
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
CV_Error( CV_StsNotImplemented, "LSH index does not support radiusSearch operation" );
|
||
|
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
|
||
|
case FLANN_DIST_L1:
|
||
|
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params);
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params);
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params);
|
||
|
case FLANN_DIST_KL:
|
||
|
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params);
|
||
|
#endif
|
||
|
default:
|
||
|
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
flann_distance_t Index::getDistance() const
|
||
|
{
|
||
|
return distType;
|
||
|
}
|
||
|
|
||
|
flann_algorithm_t Index::getAlgorithm() const
|
||
|
{
|
||
|
return algo;
|
||
|
}
|
||
|
|
||
|
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout)
|
||
|
{
|
||
|
IndexType* _index = (IndexType*)index;
|
||
|
::cvflann::save_header(fout, *_index);
|
||
|
// some compilers may store short enumerations as bytes,
|
||
|
// so make sure we always write integers (which are 4-byte values in any modern C compiler)
|
||
|
int idistType = (int)index0->getDistance();
|
||
|
::cvflann::save_value<int>(fout, idistType);
|
||
|
_index->saveIndex(fout);
|
||
|
}
|
||
|
|
||
|
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout)
|
||
|
{
|
||
|
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout);
|
||
|
}
|
||
|
|
||
|
void Index::save(const std::string& filename) const
|
||
|
{
|
||
|
FILE* fout = fopen(filename.c_str(), "wb");
|
||
|
if (fout == NULL)
|
||
|
CV_Error_( CV_StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
|
||
|
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
{
|
||
|
saveIndex_<LshIndex>(this, index, fout);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
saveIndex< ::cvflann::L2<float> >(this, index, fout);
|
||
|
break;
|
||
|
case FLANN_DIST_L1:
|
||
|
saveIndex< ::cvflann::L1<float> >(this, index, fout);
|
||
|
break;
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
|
||
|
break;
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout);
|
||
|
break;
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout);
|
||
|
break;
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout);
|
||
|
break;
|
||
|
case FLANN_DIST_KL:
|
||
|
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
fclose(fout);
|
||
|
fout = 0;
|
||
|
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
|
||
|
}
|
||
|
if( fout )
|
||
|
fclose(fout);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename Distance, typename IndexType>
|
||
|
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
|
||
|
{
|
||
|
typedef typename Distance::ElementType ElementType;
|
||
|
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
|
||
|
|
||
|
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
|
||
|
|
||
|
::cvflann::IndexParams params;
|
||
|
params["algorithm"] = index0->getAlgorithm();
|
||
|
IndexType* _index = new IndexType(dataset, params, dist);
|
||
|
_index->loadIndex(fin);
|
||
|
index = _index;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template<typename Distance>
|
||
|
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
|
||
|
{
|
||
|
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist);
|
||
|
}
|
||
|
|
||
|
bool Index::load(InputArray _data, const std::string& filename)
|
||
|
{
|
||
|
Mat data = _data.getMat();
|
||
|
bool ok = true;
|
||
|
release();
|
||
|
FILE* fin = fopen(filename.c_str(), "rb");
|
||
|
if (fin == NULL)
|
||
|
return false;
|
||
|
|
||
|
::cvflann::IndexHeader header = ::cvflann::load_header(fin);
|
||
|
algo = header.index_type;
|
||
|
featureType = header.data_type == FLANN_UINT8 ? CV_8U :
|
||
|
header.data_type == FLANN_INT8 ? CV_8S :
|
||
|
header.data_type == FLANN_UINT16 ? CV_16U :
|
||
|
header.data_type == FLANN_INT16 ? CV_16S :
|
||
|
header.data_type == FLANN_INT32 ? CV_32S :
|
||
|
header.data_type == FLANN_FLOAT32 ? CV_32F :
|
||
|
header.data_type == FLANN_FLOAT64 ? CV_64F : -1;
|
||
|
|
||
|
if( (int)header.rows != data.rows || (int)header.cols != data.cols ||
|
||
|
featureType != data.type() )
|
||
|
{
|
||
|
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n",
|
||
|
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type());
|
||
|
fclose(fin);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if( !((algo == FLANN_INDEX_LSH && featureType == CV_8U) ||
|
||
|
(algo != FLANN_INDEX_LSH && featureType == CV_32F)) )
|
||
|
{
|
||
|
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
|
||
|
fclose(fin);
|
||
|
return false;
|
||
|
}
|
||
|
int idistType = 0;
|
||
|
::cvflann::load_value(fin, idistType);
|
||
|
distType = (flann_distance_t)idistType;
|
||
|
|
||
|
if( algo == FLANN_INDEX_LSH )
|
||
|
{
|
||
|
loadIndex_<HammingDistance, LshIndex>(this, index, data, fin);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
switch( distType )
|
||
|
{
|
||
|
case FLANN_DIST_L2:
|
||
|
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
case FLANN_DIST_L1:
|
||
|
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
|
||
|
case FLANN_DIST_MAX:
|
||
|
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
case FLANN_DIST_HIST_INTERSECT:
|
||
|
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
|
||
|
break;
|
||
|
case FLANN_DIST_HELLINGER:
|
||
|
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
case FLANN_DIST_CHI_SQUARE:
|
||
|
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
case FLANN_DIST_KL:
|
||
|
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
|
||
|
ok = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( fin )
|
||
|
fclose(fin);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|