2022-02-17 05:55:56 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#ifndef __OPENCV_DNN_SRC_NET_IMPL_HPP__
|
|
|
|
#define __OPENCV_DNN_SRC_NET_IMPL_HPP__
|
|
|
|
|
|
|
|
#include "op_halide.hpp"
|
|
|
|
#include "op_inf_engine.hpp"
|
|
|
|
#include "ie_ngraph.hpp"
|
|
|
|
#include "op_vkcom.hpp"
|
|
|
|
#include "op_cuda.hpp"
|
|
|
|
#include "op_webnn.hpp"
|
2022-04-01 05:42:11 +08:00
|
|
|
#include "op_timvx.hpp"
|
2022-02-17 05:55:56 +08:00
|
|
|
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/dnn/layer_reg.private.hpp>
|
|
|
|
|
|
|
|
#include <opencv2/core/utils/fp_control_utils.hpp>
|
|
|
|
|
|
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
|
|
|
|
#include "layer_internals.hpp" // LayerPin LayerData DataLayer
|
|
|
|
|
|
|
|
#include "legacy_backend.hpp" // wrapMat BlobManager OpenCLBackendWrapper
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
namespace dnn {
|
|
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
|
|
|
|
using std::make_pair;
|
|
|
|
using std::string;
|
|
|
|
|
|
|
|
// NB: Implementation is divided between of multiple .cpp files
|
|
|
|
struct Net::Impl : public detail::NetImplBase
|
|
|
|
{
|
|
|
|
typedef std::map<int, LayerShapes> LayersShapesMap;
|
|
|
|
typedef std::map<int, LayerData> MapIdToLayerData;
|
|
|
|
|
|
|
|
Impl();
|
|
|
|
|
|
|
|
Ptr<DataLayer> netInputLayer;
|
|
|
|
std::vector<LayerPin> blobsToKeep;
|
|
|
|
MapIdToLayerData layers;
|
|
|
|
std::map<String, int> layerNameToId;
|
|
|
|
std::map<std::string, int> outputNameToId; // use registerOutput() to populate outputs
|
|
|
|
BlobManager blobManager;
|
|
|
|
int preferableBackend;
|
|
|
|
int preferableTarget;
|
|
|
|
String halideConfigFile;
|
|
|
|
bool skipInfEngineInit;
|
|
|
|
bool hasDynamicShapes;
|
|
|
|
// Map host data to backend specific wrapper.
|
|
|
|
std::map<void*, Ptr<BackendWrapper>> backendWrappers;
|
|
|
|
|
|
|
|
int lastLayerId;
|
|
|
|
|
|
|
|
bool netWasAllocated;
|
|
|
|
bool netWasQuantized;
|
|
|
|
bool fusion;
|
|
|
|
bool isAsync;
|
|
|
|
std::vector<int64> layersTimings;
|
|
|
|
|
|
|
|
|
|
|
|
bool empty() const;
|
|
|
|
void setPreferableBackend(int backendId);
|
|
|
|
void setPreferableTarget(int targetId);
|
|
|
|
|
|
|
|
// FIXIT use inheritance
|
|
|
|
Ptr<BackendWrapper> wrap(Mat& host);
|
|
|
|
|
|
|
|
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>());
|
|
|
|
|
|
|
|
|
|
|
|
Ptr<Layer> getLayer(int layerId) const;
|
|
|
|
Ptr<Layer> getLayer(const LayerId& layerId) const;
|
|
|
|
|
|
|
|
int getLayerId(const String& layerName) const;
|
|
|
|
|
|
|
|
int getLayerId(int id) const;
|
|
|
|
|
|
|
|
int getLayerId(DictValue& layerDesc) const;
|
|
|
|
|
|
|
|
String getLayerName(int id) const;
|
|
|
|
|
|
|
|
LayerData& getLayerData(int id) const;
|
|
|
|
|
|
|
|
LayerData& getLayerData(const String& layerName) const;
|
|
|
|
|
|
|
|
LayerData& getLayerData(const DictValue& layerDesc) const;
|
|
|
|
|
|
|
|
static void addLayerInput(LayerData& ld, int inNum, LayerPin from);
|
|
|
|
|
|
|
|
int resolvePinOutputName(LayerData& ld, const String& outName) const;
|
|
|
|
|
|
|
|
LayerPin getPinByAlias(const String& layerName) const;
|
|
|
|
|
|
|
|
std::vector<LayerPin> getLayerOutPins(const String& layerName) const;
|
|
|
|
|
|
|
|
// FIXIT remove dtype
|
|
|
|
int addLayer(const String& name, const String& type, const int& dtype, LayerParams& params);
|
|
|
|
|
|
|
|
int addLayerToPrev(const String& name, const String& type, const int& dtype, LayerParams& params);
|
|
|
|
|
|
|
|
|
|
|
|
void connect(int outLayerId, int outNum, int inLayerId, int inNum);
|
|
|
|
|
|
|
|
int registerOutput(const std::string& outputName, int layerId, int outputPort);
|
|
|
|
|
|
|
|
// FIXIT drop "unconnected" API
|
|
|
|
std::vector<int> getUnconnectedOutLayers() const;
|
|
|
|
std::vector<String> getUnconnectedOutLayersNames() /*const*/;
|
|
|
|
|
|
|
|
|
|
|
|
void setInputsNames(const std::vector<String>& inputBlobNames);
|
|
|
|
void setInputShape(const String& inputName, const MatShape& shape);
|
|
|
|
void setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean);
|
|
|
|
Mat getParam(int layer, int numParam) const;
|
|
|
|
void setParam(int layer, int numParam, const Mat& blob);
|
|
|
|
std::vector<Ptr<Layer>> getLayerInputs(int layerId) const;
|
|
|
|
std::vector<String> getLayerNames() const;
|
|
|
|
|
|
|
|
|
|
|
|
// TODO drop?
|
|
|
|
void getLayerTypes(std::vector<String>& layersTypes) const;
|
|
|
|
int getLayersCount(const String& layerType) const;
|
|
|
|
|
|
|
|
|
|
|
|
// FIXIT use inheritance
|
|
|
|
void initBackend(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
|
|
|
|
void setHalideScheduler(const String& scheduler);
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
void compileHalide();
|
|
|
|
void initHalideBackend();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
|
|
void addNgraphOutputs(LayerData& ld);
|
|
|
|
void initNgraphBackend(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_WEBNN
|
|
|
|
void addWebnnOutputs(LayerData& ld);
|
|
|
|
void initWebnnBackend(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_VULKAN
|
|
|
|
void initVkComBackend();
|
|
|
|
#endif
|
|
|
|
|
2022-04-01 05:42:11 +08:00
|
|
|
#ifdef HAVE_TIMVX
|
|
|
|
// Create timVxInfo for reserve tvGraphList.
|
|
|
|
TimVXInfo timVxInfo = TimVXInfo();
|
|
|
|
void tvUpdateConfictMap(int graphIndex, LayerData& ld, std::vector<std::vector<int> >& graphConflictMap);
|
|
|
|
void tvConvertToOutputNode(const LayerData& ld, Ptr<TimVXBackendWrapper>& targetWrap);
|
|
|
|
void initTimVXBackend();
|
|
|
|
#endif
|
|
|
|
|
2022-02-17 05:55:56 +08:00
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
struct CudaInfo_t
|
|
|
|
{
|
|
|
|
CudaInfo_t(cuda4dnn::csl::CSLContext ctxt, cuda4dnn::csl::Stream d2h_stream_)
|
|
|
|
: context(std::move(ctxt))
|
|
|
|
, d2h_stream(std::move(d2h_stream_))
|
|
|
|
{}
|
|
|
|
cuda4dnn::csl::CSLContext context;
|
|
|
|
cuda4dnn::csl::Stream d2h_stream;
|
|
|
|
cuda4dnn::csl::Workspace workspace;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unique_ptr<CudaInfo_t> cudaInfo;
|
|
|
|
|
|
|
|
void initCUDABackend(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void allocateLayer(int lid, const LayersShapesMap& layersShapes);
|
|
|
|
|
|
|
|
// TODO add getter
|
|
|
|
void enableFusion(bool fusion_);
|
|
|
|
|
|
|
|
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
|
|
|
|
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_);
|
|
|
|
|
|
|
|
void forwardLayer(LayerData& ld);
|
|
|
|
|
|
|
|
void forwardToLayer(LayerData& ld, bool clearFlags = true);
|
|
|
|
|
|
|
|
Mat forward(const String& outputName);
|
|
|
|
AsyncArray forwardAsync(const String& outputName);
|
|
|
|
void forward(OutputArrayOfArrays outputBlobs, const String& outputName);
|
|
|
|
void forward(OutputArrayOfArrays outputBlobs,
|
|
|
|
const std::vector<String>& outBlobNames);
|
|
|
|
void forward(std::vector<std::vector<Mat>>& outputBlobs,
|
|
|
|
const std::vector<String>& outBlobNames);
|
|
|
|
|
|
|
|
|
|
|
|
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes);
|
|
|
|
|
|
|
|
void getLayersShapes(
|
|
|
|
const ShapesVec& netInputShapes,
|
|
|
|
std::vector<int>& layersIds,
|
|
|
|
std::vector<ShapesVec>& inLayersShapes,
|
|
|
|
std::vector<ShapesVec>& outLayersShapes) /*const*/;
|
|
|
|
|
|
|
|
void getLayersShapes(const ShapesVec& netInputShapes,
|
|
|
|
LayersShapesMap& inOutShapes);
|
|
|
|
|
|
|
|
void getLayerShapes(const ShapesVec& netInputShapes,
|
|
|
|
const int layerId,
|
|
|
|
LayerShapes& shapes);
|
|
|
|
|
|
|
|
void updateLayersShapes();
|
|
|
|
|
|
|
|
int64 getFLOPS(const std::vector<MatShape>& netInputShapes) /*const*/;
|
|
|
|
int64 getFLOPS(
|
|
|
|
const int layerId,
|
|
|
|
const std::vector<MatShape>& netInputShapes) /*const*/;
|
|
|
|
|
|
|
|
void getMemoryConsumption(
|
|
|
|
const int layerId,
|
|
|
|
const std::vector<MatShape>& netInputShapes,
|
|
|
|
size_t& weights, size_t& blobs) /*const*/;
|
|
|
|
void getMemoryConsumption(
|
|
|
|
const std::vector<MatShape>& netInputShapes,
|
|
|
|
size_t& weights, size_t& blobs) /*const*/;
|
|
|
|
void getMemoryConsumption(
|
|
|
|
const std::vector<MatShape>& netInputShapes,
|
|
|
|
std::vector<int>& layerIds, std::vector<size_t>& weights,
|
|
|
|
std::vector<size_t>& blobs) /*const*/;
|
|
|
|
int64 getPerfProfile(std::vector<double>& timings) const;
|
|
|
|
|
|
|
|
// TODO drop
|
|
|
|
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins) const;
|
|
|
|
|
|
|
|
Mat getBlob(const LayerPin& pin) const;
|
|
|
|
|
|
|
|
Mat getBlob(String outputName) const;
|
|
|
|
|
|
|
|
#ifdef CV_CXX11
|
|
|
|
AsyncArray getBlobAsync(const LayerPin& pin);
|
|
|
|
|
|
|
|
AsyncArray getBlobAsync(String outputName);
|
|
|
|
#endif // CV_CXX11
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
static
|
|
|
|
Net createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNet);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
string dump(bool forceAllocation = false) const;
|
|
|
|
|
|
|
|
void dumpNetworkToFile() const;
|
|
|
|
|
|
|
|
// FIXIT drop from inference API
|
|
|
|
Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype) /*const*/;
|
|
|
|
void getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/;
|
|
|
|
void getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/;
|
|
|
|
|
|
|
|
}; // Net::Impl
|
|
|
|
|
|
|
|
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
|
|
}} // namespace cv::dnn
|
|
|
|
#endif // __OPENCV_DNN_SRC_NET_IMPL_HPP__
|