opencv/samples/dnn/custom_layers.hpp

258 lines
9.8 KiB
C++
Raw Normal View History

#ifndef __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
#define __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
#include <opencv2/dnn.hpp>
#include <opencv2/dnn/shape_utils.hpp> // getPlane
//! [InterpLayer]
class InterpLayer : public cv::dnn::Layer
{
public:
InterpLayer(const cv::dnn::LayerParams &params) : Layer(params)
{
outWidth = params.get<int>("width", 0);
outHeight = params.get<int>("height", 0);
}
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
{
return cv::Ptr<cv::dnn::Layer>(new InterpLayer(params));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int requiredOutputs,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
{
CV_UNUSED(requiredOutputs); CV_UNUSED(internals);
std::vector<int> outShape(4);
outShape[0] = inputs[0][0]; // batch size
outShape[1] = inputs[0][1]; // number of channels
outShape[2] = outHeight;
outShape[3] = outWidth;
outputs.assign(1, outShape);
return false;
}
// Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp
virtual void forward(std::vector<cv::Mat*> &inputs, std::vector<cv::Mat> &outputs, std::vector<cv::Mat> &internals) CV_OVERRIDE
{
CV_UNUSED(internals);
cv::Mat& inp = *inputs[0];
cv::Mat& out = outputs[0];
const float* inpData = (float*)inp.data;
float* outData = (float*)out.data;
const int batchSize = inp.size[0];
const int numChannels = inp.size[1];
const int inpHeight = inp.size[2];
const int inpWidth = inp.size[3];
const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f;
const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f;
for (int h2 = 0; h2 < outHeight; ++h2)
{
const float h1r = rheight * h2;
const int h1 = static_cast<int>(h1r);
const int h1p = (h1 < inpHeight - 1) ? 1 : 0;
const float h1lambda = h1r - h1;
const float h0lambda = 1.f - h1lambda;
for (int w2 = 0; w2 < outWidth; ++w2)
{
const float w1r = rwidth * w2;
const int w1 = static_cast<int>(w1r);
const int w1p = (w1 < inpWidth - 1) ? 1 : 0;
const float w1lambda = w1r - w1;
const float w0lambda = 1.f - w1lambda;
const float* pos1 = inpData + h1 * inpWidth + w1;
float* pos2 = outData + h2 * outWidth + w2;
for (int c = 0; c < batchSize * numChannels; ++c)
{
pos2[0] =
h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]);
pos1 += inpWidth * inpHeight;
pos2 += outWidth * outHeight;
}
}
}
}
virtual void forward(cv::InputArrayOfArrays, cv::OutputArrayOfArrays, cv::OutputArrayOfArrays) CV_OVERRIDE {}
private:
int outWidth, outHeight;
};
//! [InterpLayer]
//! [ResizeBilinearLayer]
class ResizeBilinearLayer CV_FINAL : public cv::dnn::Layer
{
public:
ResizeBilinearLayer(const cv::dnn::LayerParams &params) : Layer(params)
{
CV_Assert(!params.get<bool>("align_corners", false));
CV_Assert(!blobs.empty());
for (size_t i = 0; i < blobs.size(); ++i)
CV_Assert(blobs[i].type() == CV_32SC1);
// There are two cases of input blob: a single blob which contains output
// shape and two blobs with scaling factors.
if (blobs.size() == 1)
{
CV_Assert(blobs[0].total() == 2);
outHeight = blobs[0].at<int>(0, 0);
outWidth = blobs[0].at<int>(0, 1);
factorHeight = factorWidth = 0;
}
else
{
CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1);
factorHeight = blobs[0].at<int>(0, 0);
factorWidth = blobs[1].at<int>(0, 0);
outHeight = outWidth = 0;
}
}
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
{
return cv::Ptr<cv::dnn::Layer>(new ResizeBilinearLayer(params));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &) const CV_OVERRIDE
{
std::vector<int> outShape(4);
outShape[0] = inputs[0][0]; // batch size
outShape[1] = inputs[0][1]; // number of channels
outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
outputs.assign(1, outShape);
return false;
}
virtual void finalize(const std::vector<cv::Mat*>&, std::vector<cv::Mat> &outputs) CV_OVERRIDE
{
if (!outWidth && !outHeight)
{
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
}
// This implementation is based on a reference implementation from
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
virtual void forward(std::vector<cv::Mat*> &inputs, std::vector<cv::Mat> &outputs, std::vector<cv::Mat> &) CV_OVERRIDE
{
cv::Mat& inp = *inputs[0];
cv::Mat& out = outputs[0];
const float* inpData = (float*)inp.data;
float* outData = (float*)out.data;
const int batchSize = inp.size[0];
const int numChannels = inp.size[1];
const int inpHeight = inp.size[2];
const int inpWidth = inp.size[3];
float heightScale = static_cast<float>(inpHeight) / outHeight;
float widthScale = static_cast<float>(inpWidth) / outWidth;
for (int b = 0; b < batchSize; ++b)
{
for (int y = 0; y < outHeight; ++y)
{
float input_y = y * heightScale;
int y0 = static_cast<int>(std::floor(input_y));
int y1 = std::min(y0 + 1, inpHeight - 1);
for (int x = 0; x < outWidth; ++x)
{
float input_x = x * widthScale;
int x0 = static_cast<int>(std::floor(input_x));
int x1 = std::min(x0 + 1, inpWidth - 1);
for (int c = 0; c < numChannels; ++c)
{
float interpolation =
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
outData[offset(out.size, c, x, y, b)] = interpolation;
}
}
}
}
}
virtual void forward(cv::InputArrayOfArrays, cv::OutputArrayOfArrays, cv::OutputArrayOfArrays) CV_OVERRIDE {}
private:
static inline int offset(const cv::MatSize& size, int c, int x, int y, int b)
{
return x + size[3] * (y + size[2] * (c + size[1] * b));
}
int outWidth, outHeight, factorWidth, factorHeight;
};
//! [ResizeBilinearLayer]
//
// The folowing code is used only to generate tutorials documentation.
//
//! [A custom layer interface]
class MyLayer : public cv::dnn::Layer
{
public:
//! [MyLayer::MyLayer]
MyLayer(const cv::dnn::LayerParams &params);
//! [MyLayer::MyLayer]
//! [MyLayer::create]
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params);
//! [MyLayer::create]
//! [MyLayer::getMemoryShapes]
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int requiredOutputs,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &internals) const CV_OVERRIDE;
//! [MyLayer::getMemoryShapes]
//! [MyLayer::forward]
virtual void forward(std::vector<cv::Mat*> &inputs, std::vector<cv::Mat> &outputs, std::vector<cv::Mat> &internals) CV_OVERRIDE;
//! [MyLayer::forward]
//! [MyLayer::finalize]
virtual void finalize(const std::vector<cv::Mat*> &inputs, std::vector<cv::Mat> &outputs) CV_OVERRIDE;
//! [MyLayer::finalize]
virtual void forward(cv::InputArrayOfArrays inputs, cv::OutputArrayOfArrays outputs, cv::OutputArrayOfArrays internals) CV_OVERRIDE;
};
//! [A custom layer interface]
//! [Register a custom layer]
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
static inline void loadNet()
{
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
// ...
//! [Register a custom layer]
//! [Register InterpLayer]
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
cv::dnn::Net caffeNet = cv::dnn::readNet("/path/to/config.prototxt", "/path/to/weights.caffemodel");
//! [Register InterpLayer]
//! [Register ResizeBilinearLayer]
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
cv::dnn::Net tfNet = cv::dnn::readNet("/path/to/graph.pb");
//! [Register ResizeBilinearLayer]
if (false) loadNet(); // To prevent unused function warning.
}
#endif // __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__