mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
196 lines
7.1 KiB
C++
196 lines
7.1 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
//
|
||
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include "opencv2/core/ocl.hpp"
|
||
|
|
||
|
namespace cvtest {
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace dnn;
|
||
|
using namespace testing;
|
||
|
|
||
|
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE)
|
||
|
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL)
|
||
|
|
||
|
static void loadNet(const std::string& weights, const std::string& proto,
|
||
|
const std::string& framework, Net* net)
|
||
|
{
|
||
|
if (framework == "caffe")
|
||
|
*net = cv::dnn::readNetFromCaffe(proto, weights);
|
||
|
else if (framework == "torch")
|
||
|
*net = cv::dnn::readNetFromTorch(weights);
|
||
|
else if (framework == "tensorflow")
|
||
|
*net = cv::dnn::readNetFromTensorflow(weights, proto);
|
||
|
else
|
||
|
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework);
|
||
|
}
|
||
|
|
||
|
class DNNTestNetwork : public TestWithParam <tuple<DNNBackend, DNNTarget> >
|
||
|
{
|
||
|
public:
|
||
|
dnn::Backend backend;
|
||
|
dnn::Target target;
|
||
|
|
||
|
DNNTestNetwork()
|
||
|
{
|
||
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
||
|
target = (dnn::Target)(int)get<1>(GetParam());
|
||
|
}
|
||
|
|
||
|
void processNet(const std::string& weights, const std::string& proto,
|
||
|
Size inpSize, const std::string& outputLayer,
|
||
|
const std::string& framework, const std::string& halideScheduler = "",
|
||
|
double l1 = 1e-5, double lInf = 1e-4)
|
||
|
{
|
||
|
// Create a common input blob.
|
||
|
int blobSize[] = {1, 3, inpSize.height, inpSize.width};
|
||
|
Mat inp(4, blobSize, CV_32FC1);
|
||
|
randu(inp, 0.0f, 1.0f);
|
||
|
|
||
|
processNet(weights, proto, inp, outputLayer, framework, halideScheduler, l1, lInf);
|
||
|
}
|
||
|
|
||
|
void processNet(std::string weights, std::string proto,
|
||
|
Mat inp, const std::string& outputLayer,
|
||
|
const std::string& framework, std::string halideScheduler = "",
|
||
|
double l1 = 1e-5, double lInf = 1e-4)
|
||
|
{
|
||
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL)
|
||
|
{
|
||
|
#ifdef HAVE_OPENCL
|
||
|
if (!cv::ocl::useOpenCL())
|
||
|
#endif
|
||
|
{
|
||
|
throw SkipTestException("OpenCL is not available/disabled in OpenCV");
|
||
|
}
|
||
|
}
|
||
|
weights = findDataFile(weights, false);
|
||
|
if (!proto.empty())
|
||
|
proto = findDataFile(proto, false);
|
||
|
|
||
|
// Create two networks - with default backend and target and a tested one.
|
||
|
Net netDefault, net;
|
||
|
loadNet(weights, proto, framework, &netDefault);
|
||
|
loadNet(weights, proto, framework, &net);
|
||
|
|
||
|
netDefault.setInput(inp);
|
||
|
Mat outDefault = netDefault.forward(outputLayer).clone();
|
||
|
|
||
|
net.setInput(inp);
|
||
|
net.setPreferableBackend(backend);
|
||
|
net.setPreferableTarget(target);
|
||
|
if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty())
|
||
|
{
|
||
|
halideScheduler = findDataFile(halideScheduler, false);
|
||
|
net.setHalideScheduler(halideScheduler);
|
||
|
}
|
||
|
Mat out = net.forward(outputLayer).clone();
|
||
|
|
||
|
if (outputLayer == "detection_out")
|
||
|
checkDetections(outDefault, out, "First run", l1, lInf);
|
||
|
else
|
||
|
normAssert(outDefault, out, "First run", l1, lInf);
|
||
|
|
||
|
// Test 2: change input.
|
||
|
inp *= 0.1f;
|
||
|
netDefault.setInput(inp);
|
||
|
net.setInput(inp);
|
||
|
outDefault = netDefault.forward(outputLayer).clone();
|
||
|
out = net.forward(outputLayer).clone();
|
||
|
|
||
|
if (outputLayer == "detection_out")
|
||
|
checkDetections(outDefault, out, "Second run", l1, lInf);
|
||
|
else
|
||
|
normAssert(outDefault, out, "Second run", l1, lInf);
|
||
|
}
|
||
|
|
||
|
void checkDetections(const Mat& out, const Mat& ref, const std::string& msg,
|
||
|
float l1, float lInf, int top = 5)
|
||
|
{
|
||
|
top = std::min(std::min(top, out.size[2]), out.size[3]);
|
||
|
std::vector<cv::Range> range(4, cv::Range::all());
|
||
|
range[2] = cv::Range(0, top);
|
||
|
normAssert(out(range), ref(range));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_P(DNNTestNetwork, AlexNet)
|
||
|
{
|
||
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
||
|
Size(227, 227), "prob", "caffe",
|
||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" :
|
||
|
"dnn/halide_scheduler_alexnet.yml");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, ResNet_50)
|
||
|
{
|
||
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
||
|
Size(224, 224), "prob", "caffe",
|
||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" :
|
||
|
"dnn/halide_scheduler_resnet_50.yml");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1)
|
||
|
{
|
||
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
||
|
Size(227, 227), "prob", "caffe",
|
||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" :
|
||
|
"dnn/halide_scheduler_squeezenet_v1_1.yml");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, GoogLeNet)
|
||
|
{
|
||
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
||
|
Size(224, 224), "prob", "caffe");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, Inception_5h)
|
||
|
{
|
||
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", "tensorflow",
|
||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" :
|
||
|
"dnn/halide_scheduler_inception_5h.yml");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, ENet)
|
||
|
{
|
||
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", "torch",
|
||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" :
|
||
|
"dnn/halide_scheduler_enet.yml",
|
||
|
2e-5, 0.15);
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, MobileNetSSD)
|
||
|
{
|
||
|
Mat sample = imread(findDataFile("dnn/street.png", false));
|
||
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
||
|
|
||
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
|
||
|
inp, "detection_out", "caffe");
|
||
|
}
|
||
|
|
||
|
TEST_P(DNNTestNetwork, SSD_VGG16)
|
||
|
{
|
||
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
|
||
|
backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU)
|
||
|
throw SkipTestException("");
|
||
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel",
|
||
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out", "caffe");
|
||
|
}
|
||
|
|
||
|
const tuple<DNNBackend, DNNTarget> testCases[] = {
|
||
|
#ifdef HAVE_HALIDE
|
||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
|
||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL),
|
||
|
#endif
|
||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL)
|
||
|
};
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, ValuesIn(testCases));
|
||
|
|
||
|
} // namespace cvtest
|