opencv/modules/gpu/src/cuda/pyrlk.cu

685 lines
25 KiB
Plaintext
Raw Normal View History

2012-10-17 15:12:04 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong
//
// The original code was written by Paul Furgale and Chi Hay Tong
// and later optimized and prepared for integration into OpenCV by Itseez.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
namespace cv { namespace gpu { namespace device
{
namespace pyrlk
{
__constant__ int c_winSize_x;
__constant__ int c_winSize_y;
__constant__ int c_halfWin_x;
__constant__ int c_halfWin_y;
__constant__ int c_iters;
void loadConstants(int2 winSize, int iters)
{
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
}
__device__ void reduce(float& val1, float& val2, float& val3, float* smem1, float* smem2, float* smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
smem3[tid] = val3;
__syncthreads();
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
__syncthreads();
if (tid < 32)
{
volatile float* vmem1 = smem1;
volatile float* vmem2 = smem2;
volatile float* vmem3 = smem3;
vmem1[tid] = val1 += vmem1[tid + 32];
vmem2[tid] = val2 += vmem2[tid + 32];
vmem3[tid] = val3 += vmem3[tid + 32];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem2[tid] = val2 += vmem2[tid + 16];
vmem3[tid] = val3 += vmem3[tid + 16];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem3[tid] = val3 += vmem3[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem3[tid] = val3 += vmem3[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem3[tid] = val3 += vmem3[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
vmem3[tid] = val3 += vmem3[tid + 1];
}
}
__device__ void reduce(float& val1, float& val2, float* smem1, float* smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
__syncthreads();
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
__syncthreads();
if (tid < 32)
{
volatile float* vmem1 = smem1;
volatile float* vmem2 = smem2;
vmem1[tid] = val1 += vmem1[tid + 32];
vmem2[tid] = val2 += vmem2[tid + 32];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem2[tid] = val2 += vmem2[tid + 16];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
}
}
__device__ void reduce(float& val1, float* smem1, int tid)
{
smem1[tid] = val1;
__syncthreads();
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
__syncthreads();
if (tid < 32)
{
volatile float* vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 32];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
}
}
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);
template <int cn> struct Tex_I;
template <> struct Tex_I<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_If, x, y);
}
};
template <> struct Tex_I<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_If4, x, y);
}
};
template <int cn> struct Tex_J;
template <> struct Tex_J<1>
{
static __device__ __forceinline__ float read(float x, float y)
{
return tex2D(tex_Jf, x, y);
}
};
template <> struct Tex_J<4>
{
static __device__ __forceinline__ float4 read(float x, float y)
{
return tex2D(tex_Jf4, x, y);
}
};
__device__ __forceinline__ void accum(float& dst, float val)
{
dst += val;
}
__device__ __forceinline__ void accum(float& dst, const float4& val)
{
dst += val.x + val.y + val.z;
}
__device__ __forceinline__ float abs_(float a)
{
return ::fabs(a);
}
__device__ __forceinline__ float4 abs_(const float4& a)
{
return abs(a);
2012-10-17 15:12:04 +08:00
}
template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
__global__ void lkSparse(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ <= 110)
__shared__ float smem1[128];
__shared__ float smem2[128];
__shared__ float smem3[128];
#else
__shared__ float smem1[256];
__shared__ float smem2[256];
__shared__ float smem3[256];
#endif
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
float2 prevPt = prevPts[blockIdx.x];
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
typedef typename TypeVec<float, cn>::vec_type work_type;
work_type I_patch [PATCH_Y][PATCH_X];
work_type dIdx_patch[PATCH_Y][PATCH_X];
work_type dIdy_patch[PATCH_Y][PATCH_X];
for (int yBase = threadIdx.y, i = 0; yBase < c_winSize_y; yBase += blockDim.y, ++i)
{
for (int xBase = threadIdx.x, j = 0; xBase < c_winSize_x; xBase += blockDim.x, ++j)
{
float x = prevPt.x + xBase + 0.5f;
float y = prevPt.y + yBase + 0.5f;
I_patch[i][j] = Tex_I<cn>::read(x, y);
// Sharr Deriv
work_type dIdx = 3.0f * Tex_I<cn>::read(x+1, y-1) + 10.0f * Tex_I<cn>::read(x+1, y) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x-1, y) + 3.0f * Tex_I<cn>::read(x-1, y+1));
work_type dIdy = 3.0f * Tex_I<cn>::read(x-1, y+1) + 10.0f * Tex_I<cn>::read(x, y+1) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
(3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x, y-1) + 3.0f * Tex_I<cn>::read(x+1, y-1));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
accum(A11, dIdx * dIdx);
accum(A12, dIdx * dIdy);
accum(A22, dIdy * dIdy);
}
}
reduce(A11, A12, A22, smem1, smem2, smem3, tid);
__syncthreads();
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (D < numeric_limits<float>::epsilon())
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[blockIdx.x];
nextPt.x *= 2.f;
nextPt.y *= 2.f;
nextPt.x -= c_halfWin_x;
nextPt.y -= c_halfWin_y;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
float b1 = 0;
float b2 = 0;
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = (J_val - I_val) * 32.0f;
accum(b1, diff * dIdx_patch[i][j]);
accum(b2, diff * dIdy_patch[i][j]);
}
}
reduce(b1, b2, smem1, smem2, tid);
__syncthreads();
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
float errval = 0;
if (calcErr)
{
for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = J_val - I_val;
accum(errval, abs_(diff));
}
}
reduce(errval, smem1, tid);
}
if (tid == 0)
{
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
nextPts[blockIdx.x] = nextPt;
if (calcErr)
err[blockIdx.x] = static_cast<float>(errval) / (cn * c_winSize_x * c_winSize_y);
}
}
template <int cn, int PATCH_X, int PATCH_Y>
void lkSparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
if (level == 0 && err)
lkSparse<cn, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
else
lkSparse<cn, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void lkSparse1_gpu(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{lkSparse_caller<1, 1, 1>, lkSparse_caller<1, 2, 1>, lkSparse_caller<1, 3, 1>, lkSparse_caller<1, 4, 1>, lkSparse_caller<1, 5, 1>},
{lkSparse_caller<1, 1, 2>, lkSparse_caller<1, 2, 2>, lkSparse_caller<1, 3, 2>, lkSparse_caller<1, 4, 2>, lkSparse_caller<1, 5, 2>},
{lkSparse_caller<1, 1, 3>, lkSparse_caller<1, 2, 3>, lkSparse_caller<1, 3, 3>, lkSparse_caller<1, 4, 3>, lkSparse_caller<1, 5, 3>},
{lkSparse_caller<1, 1, 4>, lkSparse_caller<1, 2, 4>, lkSparse_caller<1, 3, 4>, lkSparse_caller<1, 4, 4>, lkSparse_caller<1, 5, 4>},
{lkSparse_caller<1, 1, 5>, lkSparse_caller<1, 2, 5>, lkSparse_caller<1, 3, 5>, lkSparse_caller<1, 4, 5>, lkSparse_caller<1, 5, 5>}
};
bindTexture(&tex_If, I);
bindTexture(&tex_Jf, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
void lkSparse4_gpu(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5] =
{
{lkSparse_caller<4, 1, 1>, lkSparse_caller<4, 2, 1>, lkSparse_caller<4, 3, 1>, lkSparse_caller<4, 4, 1>, lkSparse_caller<4, 5, 1>},
{lkSparse_caller<4, 1, 2>, lkSparse_caller<4, 2, 2>, lkSparse_caller<4, 3, 2>, lkSparse_caller<4, 4, 2>, lkSparse_caller<4, 5, 2>},
{lkSparse_caller<4, 1, 3>, lkSparse_caller<4, 2, 3>, lkSparse_caller<4, 3, 3>, lkSparse_caller<4, 4, 3>, lkSparse_caller<4, 5, 3>},
{lkSparse_caller<4, 1, 4>, lkSparse_caller<4, 2, 4>, lkSparse_caller<4, 3, 4>, lkSparse_caller<4, 4, 4>, lkSparse_caller<4, 5, 4>},
{lkSparse_caller<4, 1, 5>, lkSparse_caller<4, 2, 5>, lkSparse_caller<4, 3, 5>, lkSparse_caller<4, 4, 5>, lkSparse_caller<4, 5, 5>}
};
bindTexture(&tex_If4, I);
bindTexture(&tex_Jf4, J);
funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
template <bool calcErr>
__global__ void lkDense(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
{
extern __shared__ int smem[];
const int patchWidth = blockDim.x + 2 * c_halfWin_x;
const int patchHeight = blockDim.y + 2 * c_halfWin_y;
int* I_patch = smem;
int* dIdx_patch = I_patch + patchWidth * patchHeight;
int* dIdy_patch = dIdx_patch + patchWidth * patchHeight;
const int xBase = blockIdx.x * blockDim.x;
const int yBase = blockIdx.y * blockDim.y;
for (int i = threadIdx.y; i < patchHeight; i += blockDim.y)
{
for (int j = threadIdx.x; j < patchWidth; j += blockDim.x)
{
float x = xBase - c_halfWin_x + j + 0.5f;
float y = yBase - c_halfWin_y + i + 0.5f;
I_patch[i * patchWidth + j] = tex2D(tex_Ib, x, y);
// Sharr Deriv
dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x+1, y-1) + 10 * tex2D(tex_Ib, x+1, y) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x-1, y) + 3 * tex2D(tex_Ib, x-1, y+1));
dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x-1, y+1) + 10 * tex2D(tex_Ib, x, y+1) + 3 * tex2D(tex_Ib, x+1, y+1) -
(3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x, y-1) + 3 * tex2D(tex_Ib, x+1, y-1));
}
}
__syncthreads();
const int x = xBase + threadIdx.x;
const int y = yBase + threadIdx.y;
if (x >= cols || y >= rows)
return;
int A11i = 0;
int A12i = 0;
int A22i = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
A11i += dIdx * dIdx;
A12i += dIdx * dIdy;
A22i += dIdy * dIdy;
}
}
float A11 = A11i;
float A12 = A12i;
float A22 = A22i;
float D = A11 * A22 - A12 * A12;
if (D < numeric_limits<float>::epsilon())
{
if (calcErr)
err(y, x) = numeric_limits<float>::max();
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt;
nextPt.x = x + prevU(y/2, x/2) * 2.0f;
nextPt.y = y + prevV(y/2, x/2) * 2.0f;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
if (calcErr)
err(y, x) = numeric_limits<float>::max();
return;
}
int b1 = 0;
int b2 = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
int diff = (J - I) * 32;
int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
b1 += diff * dIdx;
b2 += diff * dIdy;
}
}
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
u(y, x) = nextPt.x - x;
v(y, x) = nextPt.y - y;
if (calcErr)
{
int errval = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);
errval += ::abs(J - I);
}
}
err(y, x) = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
}
}
void lkDense_gpu(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
PtrStepSzf err, int2 winSize, cudaStream_t stream)
{
dim3 block(16, 16);
dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));
bindTexture(&tex_Ib, I);
bindTexture(&tex_Jf, J);
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
const int patchWidth = block.x + 2 * halfWin.x;
const int patchHeight = block.y + 2 * halfWin.y;
size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);
if (err.data)
{
lkDense<true><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, err, I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
else
{
lkDense<false><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, PtrStepf(), I.rows, I.cols);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}
#endif /* CUDA_DISABLER */