opencv/modules/core/src/convert.dispatch.cpp

273 lines
8.5 KiB
C++
Raw Normal View History

2018-02-06 20:02:51 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
2018-02-06 20:02:51 +08:00
#include "precomp.hpp"
2014-08-01 22:11:20 +08:00
#include "opencl_kernels_core.hpp"
2019-02-08 22:37:59 +08:00
#include "convert.simd.hpp"
#include "convert.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
2019-02-08 22:37:59 +08:00
namespace cv {
/* [TODO] Recover IPP calls
2018-02-06 20:02:51 +08:00
#if defined(HAVE_IPP)
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double*) \
{ \
CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height)) >= 0) \
cvt_(src, sstep, dst, dstep, size); \
2013-11-28 04:57:36 +08:00
}
2018-02-06 20:02:51 +08:00
#define DEF_CVT_FUNC_F2(suffix, stype, dtype, ippFavor) \
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double*) \
{ \
CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height), ippRndFinancial, 0) >= 0) \
cvt_(src, sstep, dst, dstep, size); \
}
#else
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double*) \
{ \
cvt_(src, sstep, dst, dstep, size); \
}
#define DEF_CVT_FUNC_F2 DEF_CVT_FUNC_F
2014-01-25 01:03:31 +08:00
#endif
2018-02-06 20:02:51 +08:00
#define DEF_CVT_FUNC(suffix, stype, dtype) \
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double*) \
{ \
cvt_(src, sstep, dst, dstep, size); \
}
2016-11-02 02:14:21 +08:00
2018-02-06 20:02:51 +08:00
#define DEF_CPY_FUNC(suffix, stype) \
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
stype* dst, size_t dstep, Size size, double*) \
{ \
cpy_(src, sstep, dst, dstep, size); \
2016-11-02 02:14:21 +08:00
}
2018-02-06 20:02:51 +08:00
DEF_CPY_FUNC(8u, uchar)
DEF_CVT_FUNC_F(8s8u, schar, uchar, 8s8u_C1Rs)
DEF_CVT_FUNC_F(16u8u, ushort, uchar, 16u8u_C1R)
DEF_CVT_FUNC_F(16s8u, short, uchar, 16s8u_C1R)
DEF_CVT_FUNC_F(32s8u, int, uchar, 32s8u_C1R)
DEF_CVT_FUNC_F2(32f8u, float, uchar, 32f8u_C1RSfs)
DEF_CVT_FUNC(64f8u, double, uchar)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC_F2(8u8s, uchar, schar, 8u8s_C1RSfs)
DEF_CVT_FUNC_F2(16u8s, ushort, schar, 16u8s_C1RSfs)
DEF_CVT_FUNC_F2(16s8s, short, schar, 16s8s_C1RSfs)
DEF_CVT_FUNC_F(32s8s, int, schar, 32s8s_C1R)
DEF_CVT_FUNC_F2(32f8s, float, schar, 32f8s_C1RSfs)
DEF_CVT_FUNC(64f8s, double, schar)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC_F(8u16u, uchar, ushort, 8u16u_C1R)
DEF_CVT_FUNC_F(8s16u, schar, ushort, 8s16u_C1Rs)
DEF_CPY_FUNC(16u, ushort)
DEF_CVT_FUNC_F(16s16u, short, ushort, 16s16u_C1Rs)
DEF_CVT_FUNC_F2(32s16u, int, ushort, 32s16u_C1RSfs)
DEF_CVT_FUNC_F2(32f16u, float, ushort, 32f16u_C1RSfs)
DEF_CVT_FUNC(64f16u, double, ushort)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC_F(8u16s, uchar, short, 8u16s_C1R)
DEF_CVT_FUNC_F(8s16s, schar, short, 8s16s_C1R)
DEF_CVT_FUNC_F2(16u16s, ushort, short, 16u16s_C1RSfs)
DEF_CVT_FUNC_F2(32s16s, int, short, 32s16s_C1RSfs)
DEF_CVT_FUNC(32f16s, float, short)
DEF_CVT_FUNC(64f16s, double, short)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC_F(8u32s, uchar, int, 8u32s_C1R)
DEF_CVT_FUNC_F(8s32s, schar, int, 8s32s_C1R)
DEF_CVT_FUNC_F(16u32s, ushort, int, 16u32s_C1R)
DEF_CVT_FUNC_F(16s32s, short, int, 16s32s_C1R)
DEF_CPY_FUNC(32s, int)
DEF_CVT_FUNC_F2(32f32s, float, int, 32f32s_C1RSfs)
DEF_CVT_FUNC(64f32s, double, int)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC_F(8u32f, uchar, float, 8u32f_C1R)
DEF_CVT_FUNC_F(8s32f, schar, float, 8s32f_C1R)
DEF_CVT_FUNC_F(16u32f, ushort, float, 16u32f_C1R)
DEF_CVT_FUNC_F(16s32f, short, float, 16s32f_C1R)
DEF_CVT_FUNC_F(32s32f, int, float, 32s32f_C1R)
DEF_CVT_FUNC(64f32f, double, float)
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
DEF_CVT_FUNC(8u64f, uchar, double)
DEF_CVT_FUNC(8s64f, schar, double)
DEF_CVT_FUNC(16u64f, ushort, double)
DEF_CVT_FUNC(16s64f, short, double)
DEF_CVT_FUNC(32s64f, int, double)
DEF_CVT_FUNC(32f64f, float, double)
DEF_CPY_FUNC(64s, int64)
*/
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
BinaryFunc getConvertFunc(int sdepth, int ddepth)
{
2019-02-08 22:37:59 +08:00
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(getConvertFunc, (sdepth, ddepth),
CV_CPU_DISPATCH_MODES_ALL);
}
static BinaryFunc get_cvt32f16f()
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(get_cvt32f16f, (),
CV_CPU_DISPATCH_MODES_ALL);
}
static BinaryFunc get_cvt16f32f()
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(get_cvt16f32f, (),
CV_CPU_DISPATCH_MODES_ALL);
2018-02-06 20:02:51 +08:00
}
2014-04-22 23:52:37 +08:00
#ifdef HAVE_OPENCL
static bool ocl_convertFp16( InputArray _src, OutputArray _dst, int sdepth, int ddepth )
2018-02-06 20:02:51 +08:00
{
int type = _src.type(), cn = CV_MAT_CN(type);
2014-04-22 23:52:37 +08:00
_dst.createSameSize( _src, CV_MAKETYPE(ddepth, cn) );
int kercn = 1;
int rowsPerWI = 1;
String build_opt = format("-D HALF_SUPPORT -D srcT=%s -D dstT=%s -D rowsPerWI=%d%s",
sdepth == CV_32F ? "float" : "half",
sdepth == CV_32F ? "half" : "float",
rowsPerWI,
sdepth == CV_32F ? " -D FLOAT_TO_HALF " : "");
ocl::Kernel k("convertFp16", ocl::core::halfconvert_oclsrc, build_opt);
if (k.empty())
2018-02-06 20:02:51 +08:00
return false;
2014-04-22 23:52:37 +08:00
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
k.args(srcarg, dstarg);
size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
#endif
2014-04-22 23:52:37 +08:00
2019-02-08 22:37:59 +08:00
void Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
2014-04-22 23:52:37 +08:00
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
if( empty() )
{
_dst.release();
return;
}
2018-02-06 20:02:51 +08:00
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON;
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
if( _type < 0 )
_type = _dst.fixedType() ? _dst.type() : type();
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels());
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
2014-04-22 23:52:37 +08:00
{
2018-02-06 20:02:51 +08:00
copyTo(_dst);
return;
2014-04-22 23:52:37 +08:00
}
2018-02-06 20:02:51 +08:00
Mat src = *this;
if( dims <= 2 )
_dst.create( size(), _type );
else
_dst.create( dims, size, _type );
Mat dst = _dst.getMat();
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth);
double scale[] = {alpha, beta};
int cn = channels();
CV_Assert( func != 0 );
2014-04-22 23:52:37 +08:00
2018-02-06 20:02:51 +08:00
if( dims <= 2 )
{
Size sz = getContinuousSize2D(src, dst, cn);
2018-02-06 20:02:51 +08:00
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale );
}
else
{
2014-04-22 23:52:37 +08:00
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
2014-04-22 23:52:37 +08:00
NAryMatIterator it(arrays, ptrs);
2018-02-06 20:02:51 +08:00
Size sz((int)(it.size*cn), 1);
2014-04-22 23:52:37 +08:00
for( size_t i = 0; i < it.nplanes; i++, ++it )
2018-02-06 20:02:51 +08:00
func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, scale);
2014-04-22 23:52:37 +08:00
}
2014-01-25 01:03:31 +08:00
}
2013-11-28 04:57:36 +08:00
2018-02-06 20:02:51 +08:00
//==================================================================================================
2019-02-08 22:37:59 +08:00
void convertFp16(InputArray _src, OutputArray _dst)
2018-02-06 20:02:51 +08:00
{
CV_INSTRUMENT_REGION();
2012-06-09 23:00:04 +08:00
int sdepth = _src.depth(), ddepth = 0;
BinaryFunc func = 0;
2012-06-09 23:00:04 +08:00
switch( sdepth )
2018-02-06 20:02:51 +08:00
{
case CV_32F:
if(_dst.fixedType())
2018-02-06 20:02:51 +08:00
{
ddepth = _dst.depth();
CV_Assert(ddepth == CV_16S /*|| ddepth == CV_16F*/);
CV_Assert(_dst.channels() == _src.channels());
2018-02-06 20:02:51 +08:00
}
else
ddepth = CV_16S;
func = get_cvt32f16f();
2018-02-06 20:02:51 +08:00
break;
case CV_16S:
//case CV_16F:
2018-02-06 20:02:51 +08:00
ddepth = CV_32F;
func = get_cvt16f32f();
2018-02-06 20:02:51 +08:00
break;
default:
CV_Error(Error::StsUnsupportedFormat, "Unsupported input depth");
return;
}
2012-06-09 23:00:04 +08:00
2018-02-06 20:02:51 +08:00
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_convertFp16(_src, _dst, sdepth, ddepth))
2012-06-09 23:00:04 +08:00
Mat src = _src.getMat();
2018-02-06 20:02:51 +08:00
int type = CV_MAKETYPE(ddepth, src.channels());
_dst.create( src.dims, src.size, type );
Mat dst = _dst.getMat();
int cn = src.channels();
2018-02-06 20:02:51 +08:00
CV_Assert( func != 0 );
2018-02-06 20:02:51 +08:00
if( src.dims <= 2 )
{
Size sz = getContinuousSize2D(src, dst, cn);
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, 0);
}
else
{
2018-02-06 20:02:51 +08:00
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
2018-02-06 20:02:51 +08:00
NAryMatIterator it(arrays, ptrs);
Size sz((int)(it.size*cn), 1);
2018-02-06 20:02:51 +08:00
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], 0, 0, 0, ptrs[1], 0, sz, 0);
2018-02-06 20:02:51 +08:00
}
}
2019-02-08 22:37:59 +08:00
} // namespace cv