opencv/modules/objdetect/src/barcode.cpp

375 lines
12 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (c) 2020-2021 darkliang wangberlinT Certseeds
#include "precomp.hpp"
#include <opencv2/objdetect/barcode.hpp>
#include <opencv2/core/utils/filesystem.hpp>
#include "barcode_decoder/ean13_decoder.hpp"
#include "barcode_decoder/ean8_decoder.hpp"
#include "barcode_detector/bardetect.hpp"
#include "barcode_decoder/common/super_scale.hpp"
#include "barcode_decoder/common/utils.hpp"
#include "graphical_code_detector_impl.hpp"
using std::string;
using std::vector;
using std::make_shared;
using std::array;
using std::shared_ptr;
using std::dynamic_pointer_cast;
namespace cv {
namespace barcode {
//==================================================================================================
static bool checkBarInputImage(InputArray img, Mat &gray)
{
CV_Assert(!img.empty());
CV_CheckDepthEQ(img.depth(), CV_8U, "");
if (img.cols() <= 40 || img.rows() <= 40)
{
return false; // image data is not enough for providing reliable results
}
int incn = img.channels();
CV_Check(incn, incn == 1 || incn == 3 || incn == 4, "");
if (incn == 3 || incn == 4)
{
cvtColor(img, gray, COLOR_BGR2GRAY);
}
else
{
gray = img.getMat();
}
return true;
}
static void updatePointsResult(OutputArray points_, const vector<Point2f> &points)
{
if (points_.needed())
{
int N = int(points.size() / 4);
if (N > 0)
{
Mat m_p(N, 4, CV_32FC2, (void *) &points[0]);
int points_type = points_.fixedType() ? points_.type() : CV_32FC2;
m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn
}
else
{
points_.release();
}
}
}
inline const array<shared_ptr<AbsDecoder>, 2> &getDecoders()
{
//indicate Decoder
static const array<shared_ptr<AbsDecoder>, 2> decoders{
shared_ptr<AbsDecoder>(new Ean13Decoder()), shared_ptr<AbsDecoder>(new Ean8Decoder())};
return decoders;
}
//==================================================================================================
class BarDecode
{
public:
void init(const vector<Mat> &bar_imgs_);
const vector<Result> &getDecodeInformation()
{ return result_info; }
bool decodeMultiplyProcess();
private:
vector<Mat> bar_imgs;
vector<Result> result_info;
};
void BarDecode::init(const vector<Mat> &bar_imgs_)
{
bar_imgs = bar_imgs_;
}
bool BarDecode::decodeMultiplyProcess()
{
static float constexpr THRESHOLD_CONF = 0.6f;
result_info.clear();
result_info.resize(bar_imgs.size());
parallel_for_(Range(0, int(bar_imgs.size())), [&](const Range &range) {
for (int i = range.start; i < range.end; i++)
{
Mat bin_bar;
Result max_res;
float max_conf = -1.f;
bool decoded = false;
for (const auto &decoder:getDecoders())
{
if (decoded)
{ break; }
for (const auto binary_type : binary_types)
{
binarize(bar_imgs[i], bin_bar, binary_type);
auto cur_res = decoder->decodeROI(bin_bar);
if (cur_res.second > max_conf)
{
max_res = cur_res.first;
max_conf = cur_res.second;
if (max_conf > THRESHOLD_CONF)
{
// code decoded
decoded = true;
break;
}
}
} //binary types
} //decoder types
result_info[i] = max_res;
}
});
return !result_info.empty();
}
//==================================================================================================
// Private class definition and implementation (pimpl)
struct BarcodeImpl : public GraphicalCodeDetector::Impl
{
public:
shared_ptr<SuperScale> sr;
bool use_nn_sr = false;
public:
//=================
// own methods
BarcodeImpl() = default;
vector<Mat> initDecode(const Mat &src, const vector<vector<Point2f>> &points) const;
bool decodeWithType(InputArray img,
InputArray points,
vector<string> &decoded_info,
vector<string> &decoded_type) const;
bool detectAndDecodeWithType(InputArray img,
vector<string> &decoded_info,
vector<string> &decoded_type,
OutputArray points_) const;
//=================
// implement interface
~BarcodeImpl() CV_OVERRIDE {}
bool detect(InputArray img, OutputArray points) const CV_OVERRIDE;
string decode(InputArray img, InputArray points, OutputArray straight_code) const CV_OVERRIDE;
string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const CV_OVERRIDE;
bool detectMulti(InputArray img, OutputArray points) const CV_OVERRIDE;
bool decodeMulti(InputArray img, InputArray points, vector<string>& decoded_info, OutputArrayOfArrays straight_code) const CV_OVERRIDE;
bool detectAndDecodeMulti(InputArray img, vector<string>& decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const CV_OVERRIDE;
};
// return cropped and scaled bar img
vector<Mat> BarcodeImpl::initDecode(const Mat &src, const vector<vector<Point2f>> &points) const
{
vector<Mat> bar_imgs;
for (auto &corners : points)
{
Mat bar_img;
cropROI(src, bar_img, corners);
// sharpen(bar_img, bar_img);
// empirical settings
if (bar_img.cols < 320 || bar_img.cols > 640)
{
float scale = 560.0f / static_cast<float>(bar_img.cols);
sr->processImageScale(bar_img, bar_img, scale, use_nn_sr);
}
bar_imgs.emplace_back(bar_img);
}
return bar_imgs;
}
bool BarcodeImpl::decodeWithType(InputArray img,
InputArray points,
vector<string> &decoded_info,
vector<string> &decoded_type) const
{
Mat inarr;
if (!checkBarInputImage(img, inarr))
{
return false;
}
CV_Assert(points.size().width > 0);
CV_Assert((points.size().width % 4) == 0);
vector<vector<Point2f>> src_points;
Mat bar_points = points.getMat();
bar_points = bar_points.reshape(2, 1);
for (int i = 0; i < bar_points.size().width; i += 4)
{
vector<Point2f> tempMat = bar_points.colRange(i, i + 4);
if (contourArea(tempMat) > 0.0)
{
src_points.push_back(tempMat);
}
}
CV_Assert(!src_points.empty());
vector<Mat> bar_imgs = initDecode(inarr, src_points);
BarDecode bardec;
bardec.init(bar_imgs);
bardec.decodeMultiplyProcess();
const vector<Result> info = bardec.getDecodeInformation();
decoded_info.clear();
decoded_type.clear();
bool ok = false;
for (const auto &res : info)
{
if (res.isValid())
{
ok = true;
}
decoded_info.emplace_back(res.result);
decoded_type.emplace_back(res.typeString());
}
return ok;
}
bool BarcodeImpl::detectAndDecodeWithType(InputArray img,
vector<string> &decoded_info,
vector<string> &decoded_type,
OutputArray points_) const
{
Mat inarr;
if (!checkBarInputImage(img, inarr))
{
points_.release();
return false;
}
vector<Point2f> points;
bool ok = this->detect(inarr, points);
if (!ok)
{
points_.release();
return false;
}
updatePointsResult(points_, points);
decoded_info.clear();
decoded_type.clear();
ok = decodeWithType(inarr, points, decoded_info, decoded_type);
return ok;
}
bool BarcodeImpl::detect(InputArray img, OutputArray points) const
{
Mat inarr;
if (!checkBarInputImage(img, inarr))
{
points.release();
return false;
}
Detect bardet;
bardet.init(inarr);
bardet.localization();
if (!bardet.computeTransformationPoints())
{ return false; }
vector<vector<Point2f>> pnts2f = bardet.getTransformationPoints();
vector<Point2f> trans_points;
for (auto &i : pnts2f)
{
for (const auto &j : i)
{
trans_points.push_back(j);
}
}
updatePointsResult(points, trans_points);
return true;
}
string BarcodeImpl::decode(InputArray img, InputArray points, OutputArray straight_code) const
{
CV_UNUSED(straight_code);
vector<string> decoded_info;
vector<string> decoded_type;
if (!decodeWithType(img, points, decoded_info, decoded_type))
return string();
if (decoded_info.size() < 1)
return string();
return decoded_info[0];
}
string BarcodeImpl::detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const
{
CV_UNUSED(straight_code);
vector<string> decoded_info;
vector<string> decoded_type;
vector<Point> points_;
if (!detectAndDecodeWithType(img, decoded_info, decoded_type, points_))
return string();
if (points_.size() < 4 || decoded_info.size() < 1)
return string();
points_.resize(4);
points.setTo(points_);
return decoded_info[0];
}
bool BarcodeImpl::detectMulti(InputArray img, OutputArray points) const
{
return detect(img, points);
}
bool BarcodeImpl::decodeMulti(InputArray img, InputArray points, vector<string> &decoded_info, OutputArrayOfArrays straight_code) const
{
CV_UNUSED(straight_code);
vector<string> decoded_type;
return decodeWithType(img, points, decoded_info, decoded_type);
}
bool BarcodeImpl::detectAndDecodeMulti(InputArray img, vector<string> &decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const
{
CV_UNUSED(straight_code);
vector<string> decoded_type;
return detectAndDecodeWithType(img, decoded_info, decoded_type, points);
}
//==================================================================================================
// Public class implementation
BarcodeDetector::BarcodeDetector()
: BarcodeDetector(string(), string())
{
}
BarcodeDetector::BarcodeDetector(const string &prototxt_path, const string &model_path)
{
Ptr<BarcodeImpl> p_ = new BarcodeImpl();
p = p_;
if (!prototxt_path.empty() && !model_path.empty())
{
CV_Assert(utils::fs::exists(prototxt_path));
CV_Assert(utils::fs::exists(model_path));
p_->sr = make_shared<SuperScale>();
int res = p_->sr->init(prototxt_path, model_path);
CV_Assert(res == 0);
p_->use_nn_sr = true;
}
}
BarcodeDetector::~BarcodeDetector() = default;
bool BarcodeDetector::decodeWithType(InputArray img, InputArray points, vector<string> &decoded_info, vector<string> &decoded_type) const
{
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
CV_Assert(p_);
return p_->decodeWithType(img, points, decoded_info, decoded_type);
}
bool BarcodeDetector::detectAndDecodeWithType(InputArray img, vector<string> &decoded_info, vector<string> &decoded_type, OutputArray points_) const
{
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
CV_Assert(p_);
return p_->detectAndDecodeWithType(img, decoded_info, decoded_type, points_);
}
}// namespace barcode
} // namespace cv