opencv/modules/dnn/src/op_inf_engine.hpp

271 lines
8.5 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_OP_INF_ENGINE_HPP__
#define __OPENCV_DNN_OP_INF_ENGINE_HPP__
#include "opencv2/core/cvdef.h"
2018-07-28 00:56:35 +08:00
#include "opencv2/core/cvstd.hpp"
#include "opencv2/dnn.hpp"
2019-05-01 19:51:12 +08:00
#include "opencv2/core/async.hpp"
#include "opencv2/core/detail/async_promise.hpp"
#include "opencv2/dnn/utils/inference_engine.hpp"
#ifdef HAVE_INF_ENGINE
#define INF_ENGINE_RELEASE_2018R5 2018050000
2019-04-01 20:00:25 +08:00
#define INF_ENGINE_RELEASE_2019R1 2019010000
2019-06-24 19:57:44 +08:00
#define INF_ENGINE_RELEASE_2019R2 2019020000
2019-09-02 20:35:35 +08:00
#define INF_ENGINE_RELEASE_2019R3 2019030000
2020-01-14 21:20:12 +08:00
#define INF_ENGINE_RELEASE_2020_1 2020010000
#ifndef INF_ENGINE_RELEASE
2020-01-14 21:20:12 +08:00
#warning("IE version have not been provided via command-line. Using 2019.1 by default")
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2020_1
#endif
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
#define INF_ENGINE_VER_MAJOR_GE(ver) (((INF_ENGINE_RELEASE) / 10000) >= ((ver) / 10000))
2019-01-14 14:55:44 +08:00
#define INF_ENGINE_VER_MAJOR_LT(ver) (((INF_ENGINE_RELEASE) / 10000) < ((ver) / 10000))
#define INF_ENGINE_VER_MAJOR_LE(ver) (((INF_ENGINE_RELEASE) / 10000) <= ((ver) / 10000))
#define INF_ENGINE_VER_MAJOR_EQ(ver) (((INF_ENGINE_RELEASE) / 10000) == ((ver) / 10000))
2019-01-14 14:55:44 +08:00
#if defined(__GNUC__) && __GNUC__ >= 5
//#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-06-27 22:04:10 +08:00
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
2019-06-27 22:04:10 +08:00
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#ifdef _MSC_VER
#pragma warning(disable: 4996) // was declared deprecated
#endif
#endif // HAVE_DNN_IE_NN_BUILDER_2019
2019-06-27 22:04:10 +08:00
#if defined(__GNUC__) && INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_1)
#pragma GCC visibility push(default)
#endif
#include <inference_engine.hpp>
2019-01-14 14:55:44 +08:00
#include <ie_builders.hpp>
#if defined(__GNUC__) && INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_1)
#pragma GCC visibility pop
#endif
#if defined(__GNUC__) && __GNUC__ >= 5
//#pragma GCC diagnostic pop
#endif
#endif // HAVE_INF_ENGINE
namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
Backend& getInferenceEngineBackendTypeParam();
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob);
void infEngineBlobsToMats(const std::vector<InferenceEngine::Blob::Ptr>& blobs,
std::vector<Mat>& mats);
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-01-14 14:55:44 +08:00
class InfEngineBackendNet
{
public:
InfEngineBackendNet();
InfEngineBackendNet(InferenceEngine::CNNNetwork& net);
void addLayer(InferenceEngine::Builder::Layer& layer);
2019-01-14 14:55:44 +08:00
void addOutput(const std::string& name);
void connect(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendWrapper> >& outputs,
const std::string& layerName);
bool isInitialized();
void init(Target targetId);
2019-01-14 14:55:44 +08:00
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
bool isAsync);
2019-01-14 14:55:44 +08:00
void initPlugin(InferenceEngine::CNNNetwork& net);
2019-01-14 14:55:44 +08:00
2019-06-27 18:13:48 +08:00
void addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs);
2019-01-14 14:55:44 +08:00
private:
InferenceEngine::Builder::Network netBuilder;
InferenceEngine::ExecutableNetwork netExec;
InferenceEngine::BlobMap allBlobs;
std::string device_name;
#if INF_ENGINE_VER_MAJOR_LE(2019010000)
InferenceEngine::InferenceEnginePluginPtr enginePtr;
InferenceEngine::InferencePlugin plugin;
#else
bool isInit = false;
#endif
2019-01-14 14:55:44 +08:00
struct InfEngineReqWrapper
{
InfEngineReqWrapper() : isReady(true) {}
void makePromises(const std::vector<Ptr<BackendWrapper> >& outs);
InferenceEngine::InferRequest req;
2019-05-01 19:51:12 +08:00
std::vector<cv::AsyncPromise> outProms;
std::vector<std::string> outsNames;
bool isReady;
};
std::vector<Ptr<InfEngineReqWrapper> > infRequests;
2019-01-14 14:55:44 +08:00
InferenceEngine::CNNNetwork cnn;
bool hasNetOwner;
std::map<std::string, int> layers;
std::vector<std::string> requestedOutputs;
std::set<std::pair<int, int> > unconnectedPorts;
2019-01-14 14:55:44 +08:00
};
class InfEngineBackendNode : public BackendNode
{
public:
2019-01-14 14:55:44 +08:00
InfEngineBackendNode(const InferenceEngine::Builder::Layer& layer);
InfEngineBackendNode(Ptr<Layer>& layer, std::vector<Mat*>& inputs,
std::vector<Mat>& outputs, std::vector<Mat>& internals);
void connect(std::vector<Ptr<BackendWrapper> >& inputs,
std::vector<Ptr<BackendWrapper> >& outputs);
// Inference Engine network object that allows to obtain the outputs of this layer.
2019-01-14 14:55:44 +08:00
InferenceEngine::Builder::Layer layer;
Ptr<InfEngineBackendNet> net;
// CPU fallback in case of unsupported Inference Engine layer.
Ptr<dnn::Layer> cvLayer;
};
class InfEngineBackendWrapper : public BackendWrapper
{
public:
InfEngineBackendWrapper(int targetId, const Mat& m);
InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper);
~InfEngineBackendWrapper();
static Ptr<BackendWrapper> create(Ptr<BackendWrapper> wrapper);
2018-03-15 21:16:56 +08:00
virtual void copyToHost() CV_OVERRIDE;
2018-03-15 21:16:56 +08:00
virtual void setHostDirty() CV_OVERRIDE;
InferenceEngine::DataPtr dataPtr;
InferenceEngine::Blob::Ptr blob;
2019-05-01 19:51:12 +08:00
AsyncArray futureMat;
};
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape, InferenceEngine::Layout layout);
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr);
// Convert Inference Engine blob with FP32 precision to FP16 precision.
// Allocates memory for a new blob.
InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob);
void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data, InferenceEngine::Builder::Layer& l);
// This is a fake class to run networks from Model Optimizer. Objects of that
// class simulate responses of layers are imported by OpenCV and supported by
// Inference Engine. The main difference is that they do not perform forward pass.
class InfEngineBackendLayer : public Layer
{
public:
2019-01-11 01:29:44 +08:00
InfEngineBackendLayer(const InferenceEngine::CNNNetwork &t_net_) : t_net(t_net_) {};
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
2018-03-15 21:16:56 +08:00
std::vector<MatShape> &internals) const CV_OVERRIDE;
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
2018-03-15 21:16:56 +08:00
OutputArrayOfArrays internals) CV_OVERRIDE;
2018-03-15 21:16:56 +08:00
virtual bool supportBackend(int backendId) CV_OVERRIDE;
private:
2019-01-11 01:29:44 +08:00
InferenceEngine::CNNNetwork t_net;
};
class InfEngineExtension : public InferenceEngine::IExtension
{
public:
virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {}
virtual void Unload() noexcept {}
virtual void Release() noexcept {}
virtual void GetVersion(const InferenceEngine::Version*&) const noexcept {}
virtual InferenceEngine::StatusCode getPrimitiveTypes(char**&, unsigned int&,
InferenceEngine::ResponseDesc*) noexcept
{
return InferenceEngine::StatusCode::OK;
}
InferenceEngine::StatusCode getFactoryFor(InferenceEngine::ILayerImplFactory*& factory,
const InferenceEngine::CNNLayer* cnnLayer,
InferenceEngine::ResponseDesc* resp) noexcept;
};
#endif // HAVE_DNN_IE_NN_BUILDER_2019
CV__DNN_INLINE_NS_BEGIN
bool isMyriadX();
CV__DNN_INLINE_NS_END
InferenceEngine::Core& getCore();
template<typename T = size_t>
static inline std::vector<T> getShape(const Mat& mat)
{
std::vector<T> result(mat.dims);
for (int i = 0; i < mat.dims; i++)
result[i] = (T)mat.size[i];
return result;
}
#endif // HAVE_INF_ENGINE
bool haveInfEngine();
void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync);
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_OP_INF_ENGINE_HPP__