opencv/modules/ocl/src/opencl/haarobjectdetect.cl

562 lines
23 KiB
Common Lisp
Raw Normal View History

// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Wang Weiyan, wangweiyanster@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Nathan, liujun@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
#pragma OPENCL EXTENSION cl_amd_printf : enable
#define CV_HAAR_FEATURE_MAX 3
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
#define calc_sum1(rect,offset,i) (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset])
typedef int sumtype;
typedef float sqsumtype;
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
{
2012-10-17 07:18:30 +08:00
struct __attribute__((aligned (32)))
{
int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4)));
float weight __attribute__((aligned (4)));
}
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
}
GpuHidHaarFeature;
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
{
2012-10-17 07:18:30 +08:00
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
float threshold /*__attribute__((aligned (4)))*/;
float alpha[2] __attribute__((aligned (8)));
int left __attribute__((aligned (4)));
int right __attribute__((aligned (4)));
}
GpuHidHaarTreeNode;
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
{
2012-10-17 07:18:30 +08:00
int count __attribute__((aligned (4)));
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
float* alpha __attribute__((aligned (8)));
}
GpuHidHaarClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
{
2012-10-17 07:18:30 +08:00
int count __attribute__((aligned (4)));
float threshold __attribute__((aligned (4)));
int two_rects __attribute__((aligned (4)));
int reserved0 __attribute__((aligned (8)));
int reserved1 __attribute__((aligned (8)));
int reserved2 __attribute__((aligned (8)));
int reserved3 __attribute__((aligned (8)));
}
GpuHidHaarStageClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
{
2012-10-17 07:18:30 +08:00
int count __attribute__((aligned (4)));
int is_stump_based __attribute__((aligned (4)));
int has_tilted_features __attribute__((aligned (4)));
int is_tree __attribute__((aligned (4)));
int pq0 __attribute__((aligned (4)));
int pq1 __attribute__((aligned (4)));
int pq2 __attribute__((aligned (4)));
int pq3 __attribute__((aligned (4)));
int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4)));
float inv_window_area __attribute__((aligned (4)));
} GpuHidHaarClassifierCascade;
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(//constant GpuHidHaarClassifierCascade * cascade,
global GpuHidHaarStageClassifier * stagecascadeptr,
global int4 * info,
global GpuHidHaarTreeNode * nodeptr,
global const int * restrict sum1,
global const float * restrict sqsum1,
global int4 * candidate,
const int pixelstep,
const int loopcount,
const int start_stage,
const int split_stage,
const int end_stage,
const int startnode,
const int splitnode,
const int4 p,
const int4 pq,
const float correction
//const int width,
//const int height,
//const int grpnumperline,
//const int totalgrp
)
{
2012-10-17 07:18:30 +08:00
int grpszx = get_local_size(0);
int grpszy = get_local_size(1);
int grpnumx = get_num_groups(0);
int grpidx = get_group_id(0);
int lclidx = get_local_id(0);
int lclidy = get_local_id(1);
2012-10-17 07:18:30 +08:00
int lcl_sz = mul24(grpszx,grpszy);
int lcl_id = mad24(lclidy,grpszx,lclidx);
2012-10-17 07:18:30 +08:00
//assume lcl_sz == 256 or 128 or 64
//int lcl_sz_shift = (lcl_sz == 256) ? 8 : 7;
//lcl_sz_shift = (lcl_sz == 64) ? 6 : lcl_sz_shift;
__local int lclshare[1024];
#define OFF 0
2012-10-17 07:18:30 +08:00
__local int* lcldata = lclshare + OFF;//for save win data
__local int* glboutindex = lcldata + 28*28;//for save global out index
__local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel
__local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel
__local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1));
glboutindex[0]=0;
int outputoff = mul24(grpidx,256);
//assume window size is 20X20
#define WINDOWSIZE 20+1
2012-10-17 07:18:30 +08:00
//make sure readwidth is the multiple of 4
//ystep =1, from host code
int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2;
int readheight = grpszy-1+WINDOWSIZE;
int read_horiz_cnt = readwidth >> 2;//each read int4
int total_read = mul24(read_horiz_cnt,readheight);
int read_loop = (total_read + lcl_sz - 1) >> 6;
candidate[outputoff+(lcl_id<<2)] = (int4)0;
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
for(int scalei = 0; scalei <loopcount; scalei++)
{
int4 scaleinfo1= info[scalei];
int width = (scaleinfo1.x & 0xffff0000) >> 16;
int height = scaleinfo1.x & 0xffff;
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff;
int imgoff = scaleinfo1.z;
float factor = as_float(scaleinfo1.w);
//int ystep =1;// factor > 2.0 ? 1 : 2;
__global const int * sum = sum1 + imgoff;
__global const float * sqsum = sqsum1 + imgoff;
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
2012-10-17 07:18:30 +08:00
{
int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline);
int x = mad24(grpidx,grpszx,lclidx);
int y = mad24(grpidy,grpszy,lclidy);
//candidate_result.x = convert_int_rtn(x*factor);
//candidate_result.y = convert_int_rtn(y*factor);
int grpoffx = x-lclidx;
int grpoffy = y-lclidy;
for(int i=0; i<read_loop; i++)
2012-10-17 07:18:30 +08:00
{
int pos_id = mad24(i,lcl_sz,lcl_id);
pos_id = pos_id < total_read ? pos_id : 0;
int lcl_y = pos_id / read_horiz_cnt;
int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt);
int glb_x = grpoffx + (lcl_x<<2);
int glb_y = grpoffy + lcl_y;
int glb_off = mad24(glb_y,pixelstep,glb_x);
int4 data = *(__global int4*)&sum[glb_off];
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
lcldata[lcl_off] = data.x;
lcldata[lcl_off+1] = data.y;
lcldata[lcl_off+2] = data.z;
lcldata[lcl_off+3] = data.w;
}
lcloutindex[lcl_id] = 0;
lclcount[0] = 0;
int result = 1;
int nodecounter= startnode;
float mean, variance_norm_factor;
barrier(CLK_LOCAL_MEM_FENCE);
int lcl_off = mad24(lclidy,readwidth,lclidx);
int4 cascadeinfo1, cascadeinfo2;
cascadeinfo1 = p;
cascadeinfo2 = pq;// + mad24(y, pixelstep, x);
//if((x < width) && (y < height))
{
cascadeinfo1.x +=lcl_off;
cascadeinfo1.z +=lcl_off;
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
*correction;
2012-10-17 07:18:30 +08:00
int p_offset = mad24(y, pixelstep, x);
cascadeinfo2.x +=p_offset;
cascadeinfo2.z +=p_offset;
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
2012-10-17 07:18:30 +08:00
variance_norm_factor = variance_norm_factor * correction - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
//if( cascade->is_stump_based )
//{
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
{
float stage_sum = 0.f;
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
float stagethreshold = as_float(stageinfo.y);
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ )
{
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=lcl_off;
info1.z +=lcl_off;
info2.x +=lcl_off;
info2.z +=lcl_off;
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
2012-10-17 07:18:30 +08:00
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
2012-10-17 07:18:30 +08:00
//if((info3.z - info3.x) && (!stageinfo.z))
//{
info3.x +=lcl_off;
info3.z +=lcl_off;
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
2012-10-17 07:18:30 +08:00
//}
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
nodecounter++;
}
result = (stage_sum >= stagethreshold);
}
if(result && (x < width) && (y < height))
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
}
barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
2012-10-17 07:18:30 +08:00
nodecounter = splitnode;
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
2012-10-17 07:18:30 +08:00
{
//barrier(CLK_LOCAL_MEM_FENCE);
2012-10-17 07:18:30 +08:00
//if(lcl_id == 0)
lclcount[0]=0;
2012-10-17 07:18:30 +08:00
barrier(CLK_LOCAL_MEM_FENCE);
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
float stagethreshold = as_float(stageinfo.y);
int perfscale = queuecount > 4 ? 3 : 2;
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
int lcl_compute_win = lcl_sz >> perfscale;
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
for(int queueloop=0; queueloop<queuecount_loop/* && lcl_compute_win_id < queuecount*/; queueloop++)
2012-10-17 07:18:30 +08:00
{
float stage_sum = 0.f;
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
//barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_compute_win_id < queuecount)
2012-10-17 07:18:30 +08:00
{
int tempnodecounter = lcl_compute_id;
float part_sum = 0.f;
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
{
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
2012-10-17 07:18:30 +08:00
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
2012-10-17 07:18:30 +08:00
info1.x +=queue_pixel;
info1.z +=queue_pixel;
info2.x +=queue_pixel;
info2.z +=queue_pixel;
2012-10-17 07:18:30 +08:00
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
2012-10-17 07:18:30 +08:00
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
//if((info3.z - info3.x) && (!stageinfo.z))
//{
2012-10-17 07:18:30 +08:00
info3.x +=queue_pixel;
info3.z +=queue_pixel;
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
//}
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
tempnodecounter +=lcl_compute_win;
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
partialsum[lcl_id]=part_sum;
2012-10-17 07:18:30 +08:00
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_compute_win_id < queuecount)
2012-10-17 07:18:30 +08:00
{
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
{
stage_sum += partialsum[lcl_id+i];
}
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex<<1] = temp_coord;
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
}
lcl_compute_win_id +=(1<<perfscale);
2012-10-17 07:18:30 +08:00
}
barrier(CLK_LOCAL_MEM_FENCE);
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
//barrier(CLK_LOCAL_MEM_FENCE);
2012-10-17 07:18:30 +08:00
queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE);
2012-10-17 07:18:30 +08:00
nodecounter += stageinfo.x;
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
//barrier(CLK_LOCAL_MEM_FENCE);
if(lcl_id<queuecount)
{
int temp = lcloutindex[lcl_id<<1];
int x = mad24(grpidx,grpszx,temp & 0xffff);
int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16));
temp = glboutindex[0];
int4 candidate_result;
candidate_result.zw = (int2)convert_int_rtn(factor*20.f);
candidate_result.x = convert_int_rtn(x*factor);
candidate_result.y = convert_int_rtn(y*factor);
atomic_inc(glboutindex);
candidate[outputoff+temp+lcl_id] = candidate_result;
}
barrier(CLK_LOCAL_MEM_FENCE);
}//end if((x < width) && (y < height))
}//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
//outputoff +=mul24(width,height);
}//end for(int scalei = 0; scalei <loopcount; scalei++)
}
2012-10-17 07:18:30 +08:00
/*
if(stagecascade->two_rects)
{
#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t1 = *(node + counter);
t = t1.threshold * variance_norm_factor;
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
2012-10-17 07:18:30 +08:00
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
2012-10-17 07:18:30 +08:00
counter++;
}
}
else
{
#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t = node[counter].threshold*variance_norm_factor;
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
2012-10-17 07:18:30 +08:00
if( node[counter].p0[2] )
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
2012-10-17 07:18:30 +08:00
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
2012-10-17 07:18:30 +08:00
counter++;
}
}
*/
/*
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
constant GpuHidHaarClassifierCascade * _cascade,
global GpuHidHaarStageClassifier * stagecascadeptr,
//global GpuHidHaarClassifier * classifierptr,
global GpuHidHaarTreeNode * nodeptr,
global int * sum,
global float * sqsum,
global int * _candidate,
int pixel_step,
int cols,
int rows,
int start_stage,
int end_stage,
//int counts,
int nodenum,
int ystep,
int detect_width,
//int detect_height,
int loopcount,
int outputstep)
//float scalefactor)
{
unsigned int x1 = get_global_id(0);
unsigned int y1 = get_global_id(1);
int p_offset;
int m, n;
int result;
int counter;
float mean, variance_norm_factor;
for(int i=0;i<loopcount;i++)
{
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
global int * candidate = _candidate + i*outputstep;
int window_width = cascade->p1 - cascade->p0;
int window_height = window_width;
result = 1;
counter = 0;
unsigned int x = mul24(x1,ystep);
unsigned int y = mul24(y1,ystep);
if((x < cols - window_width - 1) && (y < rows - window_height -1))
{
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
//global GpuHidHaarClassifier *classifier = classifierptr;
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
2012-10-17 07:18:30 +08:00
p_offset = mad24(y, pixel_step, x);// modify
2012-10-17 07:18:30 +08:00
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
*cascade->inv_window_area;
2012-10-17 07:18:30 +08:00
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
2012-10-17 07:18:30 +08:00
// if( cascade->is_stump_based )
//{
for( m = start_stage; m < end_stage; m++ )
{
float stage_sum = 0.f;
float t, classsum;
GpuHidHaarTreeNode t1;
//#pragma unroll
for( n = 0; n < stagecascade->count; n++ )
{
t1 = *(node + counter);
t = t1.threshold * variance_norm_factor;
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
if((t1.p0[2]) && (!stagecascade->two_rects))
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
counter++;
}
2012-10-17 07:18:30 +08:00
if (stage_sum < stagecascade->threshold)
{
result = 0;
break;
}
stagecascade++;
}
if(result)
{
candidate[4 * (y1 * detect_width + x1)] = x;
candidate[4 * (y1 * detect_width + x1) + 1] = y;
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
}
//}
}
}
}
*/