2010-05-12 01:44:00 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
/*
|
|
|
|
FeatureDetector
|
|
|
|
*/
|
|
|
|
struct MaskPredicate
|
|
|
|
{
|
|
|
|
MaskPredicate( const Mat& _mask ) : mask(_mask)
|
|
|
|
{}
|
|
|
|
MaskPredicate& operator=(const MaskPredicate&) {}
|
|
|
|
bool operator() (const KeyPoint& key_pt) const
|
|
|
|
{
|
|
|
|
return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Mat& mask;
|
|
|
|
};
|
|
|
|
|
|
|
|
void FeatureDetector::removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints )
|
|
|
|
{
|
|
|
|
if( mask.empty() )
|
|
|
|
return;
|
|
|
|
|
|
|
|
keypoints.erase(remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end());
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
FastFeatureDetector
|
|
|
|
*/
|
|
|
|
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression )
|
|
|
|
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression)
|
|
|
|
{}
|
|
|
|
|
|
|
|
void FastFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints) const
|
|
|
|
{
|
|
|
|
FAST( image, keypoints, threshold, nonmaxSuppression );
|
|
|
|
removeInvalidPoints( mask, keypoints );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
GoodFeaturesToTrackDetector
|
|
|
|
*/
|
|
|
|
GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel, \
|
|
|
|
double _minDistance, int _blockSize,
|
|
|
|
bool _useHarrisDetector, double _k )
|
|
|
|
: maxCorners(_maxCorners), qualityLevel(_qualityLevel), minDistance(_minDistance),
|
|
|
|
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
|
|
|
|
{}
|
|
|
|
|
|
|
|
void GoodFeaturesToTrackDetector::detectImpl( const Mat& image, const Mat& mask,
|
|
|
|
vector<KeyPoint>& keypoints ) const
|
|
|
|
{
|
|
|
|
vector<Point2f> corners;
|
|
|
|
goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance, mask,
|
|
|
|
blockSize, useHarrisDetector, k );
|
|
|
|
keypoints.resize(corners.size());
|
|
|
|
vector<Point2f>::const_iterator corner_it = corners.begin();
|
|
|
|
vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
|
|
|
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
|
|
|
|
{
|
|
|
|
*keypoint_it = KeyPoint( *corner_it, 1.f );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
MserFeatureDetector
|
|
|
|
*/
|
|
|
|
MserFeatureDetector::MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
|
|
float maxVariation, float minDiversity,
|
|
|
|
int maxEvolution, double areaThreshold,
|
|
|
|
double minMargin, int edgeBlurSize )
|
|
|
|
: mser( delta, minArea, maxArea, maxVariation, minDiversity,
|
|
|
|
maxEvolution, areaThreshold, minMargin, edgeBlurSize )
|
|
|
|
{}
|
|
|
|
|
|
|
|
void MserFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints ) const
|
|
|
|
{
|
|
|
|
vector<vector<Point> > msers;
|
|
|
|
mser(image, msers, mask);
|
|
|
|
|
|
|
|
keypoints.resize( msers.size() );
|
|
|
|
vector<vector<Point> >::const_iterator contour_it = msers.begin();
|
|
|
|
vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
|
|
|
for( ; contour_it != msers.end(); ++contour_it, ++keypoint_it )
|
|
|
|
{
|
|
|
|
RotatedRect rect = fitEllipse(Mat(*contour_it));
|
|
|
|
*keypoint_it = KeyPoint( rect.center, min(rect.size.height, rect.size.width), rect.angle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
StarFeatureDetector
|
|
|
|
*/
|
|
|
|
StarFeatureDetector::StarFeatureDetector(int maxSize, int responseThreshold,
|
|
|
|
int lineThresholdProjected,
|
|
|
|
int lineThresholdBinarized,
|
|
|
|
int suppressNonmaxSize)
|
|
|
|
: star( maxSize, responseThreshold, lineThresholdProjected,
|
|
|
|
lineThresholdBinarized, suppressNonmaxSize)
|
|
|
|
{}
|
|
|
|
|
|
|
|
void StarFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints) const
|
|
|
|
{
|
|
|
|
star(image, keypoints);
|
|
|
|
removeInvalidPoints(mask, keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
SiftFeatureDetector
|
|
|
|
*/
|
2010-05-20 00:02:30 +08:00
|
|
|
SiftFeatureDetector::SiftFeatureDetector(double threshold, double edgeThreshold,
|
|
|
|
int nOctaves, int nOctaveLayers, int firstOctave, int angleMode) :
|
|
|
|
sift(threshold, edgeThreshold, nOctaves, nOctaveLayers, firstOctave, angleMode)
|
2010-05-12 01:44:00 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void SiftFeatureDetector::detectImpl( const Mat& image, const Mat& mask,
|
|
|
|
vector<KeyPoint>& keypoints) const
|
|
|
|
{
|
|
|
|
sift(image, mask, keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
SurfFeatureDetector
|
|
|
|
*/
|
|
|
|
SurfFeatureDetector::SurfFeatureDetector( double hessianThreshold, int octaves, int octaveLayers)
|
|
|
|
: surf(hessianThreshold, octaves, octaveLayers)
|
|
|
|
{}
|
|
|
|
|
|
|
|
void SurfFeatureDetector::detectImpl( const Mat& image, const Mat& mask,
|
|
|
|
vector<KeyPoint>& keypoints) const
|
|
|
|
{
|
|
|
|
surf(image, mask, keypoints);
|
|
|
|
}
|