opencv/modules/video/src/bgfg_gaussmix2.cpp

680 lines
21 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*//Implementation of the Gaussian mixture model background subtraction from:
//
//"Improved adaptive Gausian mixture model for background subtraction"
//Z.Zivkovic
//International Conference Pattern Recognition, UK, August, 2004
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
//The code is very fast and performs also shadow detection.
//Number of Gausssian components is adapted per pixel.
//
// and
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
//
//
//
2010-12-29 05:15:58 +08:00
// Example usage as part of the CvBGStatModel:
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
//
// //update for each frame
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
//
// //release at the program termination
// cvReleaseBGStatModel( &bg_model );
//
//Author: Z.Zivkovic, www.zoranz.net
//Date: 27-April-2005, Version:0.9
///////////*/
2010-12-29 05:15:58 +08:00
#include "precomp.hpp"
2010-12-29 05:15:58 +08:00
#define CV_BG_MODEL_MOG2 3 /* "Mixture of Gaussians 2". */
/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG2_STD_THRESHOLD 4.0f /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_WINDOW_SIZE 500 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD 0.9f /* threshold sum of weights for background test */
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE 3.0f /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG2_SIGMA_INIT 15.0f
#define CV_BGFG_MOG2_MINAREA 15.0f
/* additional parameters */
#define CV_BGFG_MOG2_CT 0.05f /* complexity reduction prior constant 0 - no reduction of number of components*/
#define CV_BGFG_MOG2_SHADOW_VALUE 127 /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
#define CV_BGFG_MOG2_SHADOW_TAU 0.5f /* Tau - shadow threshold, see the paper for explanation*/
struct CvGaussBGStatModel2Params
{
bool bPostFiltering;//defult 1 - do postfiltering
double minArea; // for postfiltering
bool bShadowDetection;//default 1 - do shadow detection
bool bRemoveForeground;//default 0, set to 1 to remove foreground pixels from the image and return background image
bool bInit;//default 1, faster updates at start
/////////////////////////
//very important parameters - things you will change
////////////////////////
float fAlphaT;
//alpha - speed of update - if the time interval you want to average over is T
//set alpha=1/T. It is also usefull at start to make T slowly increase
//from 1 until the desired T
float fTb;
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
//by the background model or not. Related to Cthr from the paper.
//This does not influence the update of the background. A typical value could be 4 sigma
//and that is Tb=4*4=16;
/////////////////////////
//less important parameters - things you might change but be carefull
////////////////////////
float fTg;
//Tg - threshold on the squared Mahalan. dist. to decide
//when a sample is close to the existing components. If it is not close
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
//Smaller Tg leads to more generated components and higher Tg might make
//lead to small number of components but they can grow too large
float fTB;//1-cf from the paper
//TB - threshold when the component becomes significant enough to be included into
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
//it is considered foreground
float fSigma;
//initial standard deviation for the newly generated components.
//It will will influence the speed of adaptation. A good guess should be made.
//A simple way is to estimate the typical standard deviation from the images.
//I used here 10 as a reasonable value
float fCT;//CT - complexity reduction prior
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
//even less important parameters
int nM;//max number of modes - const - 4 is usually enough
//shadow detection parameters
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
float fTau;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};
struct CvPBGMMGaussian
{
float sigma;
float muR;
float muG;
float muB;
float weight;
};
struct CvGaussBGStatModel2Data
{
int nWidth,nHeight,nSize,nNBands;//image info
// dynamic array for the mixture of Gaussians
std::vector<CvPBGMMGaussian> rGMM;
std::vector<uchar> rnUsedModes;//number of Gaussian components per pixel
};
//only foreground image is updated
//no filtering included
struct CvGaussBGModel2
{
CvGaussBGStatModel2Params params;
CvGaussBGStatModel2Data data;
int countFrames;
};
static int _icvRemoveShadowGMM(long posPixel,
float red, float green, float blue,
unsigned char nModes,
CvPBGMMGaussian* m_aGaussians,
float m_fTb,
float m_fTB,
float m_fTau)
{
//calculate distances to the modes (+ sort???)
//here we need to go in descending order!!!
long pos;
float tWeight = 0;
float numerator, denominator;
// check all the distributions, marked as background:
for (int iModes=0;iModes<nModes;iModes++)
{
pos=posPixel+iModes;
float var = m_aGaussians[pos].sigma;
float muR = m_aGaussians[pos].muR;
float muG = m_aGaussians[pos].muG;
float muB = m_aGaussians[pos].muB;
float weight = m_aGaussians[pos].weight;
tWeight += weight;
numerator = red * muR + green * muG + blue * muB;
denominator = muR * muR + muG * muG + muB * muB;
// no division by zero allowed
if (denominator == 0)
{
break;
};
float a = numerator / denominator;
// if tau < a < 1 then also check the color distortion
if ((a <= 1) && (a >= m_fTau))//m_nBeta=1
{
float dR=a * muR - red;
float dG=a * muG - green;
float dB=a * muB - blue;
//square distance -slower and less accurate
//float maxDistance = cvSqrt(m_fTb*var);
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
//circle
float dist=(dR*dR+dG*dG+dB*dB);
if (dist<m_fTb*var*a*a)
{
return 2;
}
};
if (tWeight > m_fTB)
{
break;
};
};
return 0;
}
2010-12-29 05:15:58 +08:00
static int _icvUpdatePixelBackgroundGMM(long posPixel,
float red, float green, float blue,
unsigned char* pModesUsed,
CvPBGMMGaussian* m_aGaussians,
int m_nM,
float m_fAlphaT,
float m_fTb,
float m_fTB,
float m_fTg,
float m_fSigma,
float m_fPrune)
{
//calculate distances to the modes (+ sort???)
//here we need to go in descending order!!!
long pos;
bool bFitsPDF=0;
bool bBackground=0;
float m_fOneMinAlpha=1-m_fAlphaT;
unsigned char nModes=*pModesUsed;
float totalWeight=0.0f;
//////
//go through all modes
for (int iModes=0;iModes<nModes;iModes++)
{
pos=posPixel+iModes;
float weight = m_aGaussians[pos].weight;
////
//fit not found yet
if (!bFitsPDF)
{
//check if it belongs to some of the modes
//calculate distance
float var = m_aGaussians[pos].sigma;
float muR = m_aGaussians[pos].muR;
float muG = m_aGaussians[pos].muG;
float muB = m_aGaussians[pos].muB;
float dR=muR - red;
float dG=muG - green;
float dB=muB - blue;
///////
//check if it fits the current mode (Factor * sigma)
//square distance -slower and less accurate
//float maxDistance = cvSqrt(m_fTg*var);
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
//circle
float dist=(dR*dR+dG*dG+dB*dB);
//background? - m_fTb
if ((totalWeight<m_fTB)&&(dist<m_fTb*var))
bBackground=1;
//check fit
if (dist<m_fTg*var)
{
/////
//belongs to the mode
bFitsPDF=1;
//update distribution
float k = m_fAlphaT/weight;
weight=m_fOneMinAlpha*weight+m_fPrune;
weight+=m_fAlphaT;
m_aGaussians[pos].muR = muR - k*(dR);
m_aGaussians[pos].muG = muG - k*(dG);
m_aGaussians[pos].muB = muB - k*(dB);
//limit update speed for cov matrice
//not needed
//k=k>20*m_fAlphaT?20*m_fAlphaT:k;
//float sigmanew = var + k*((0.33*(dR*dR+dG*dG+dB*dB))-var);
//float sigmanew = var + k*((dR*dR+dG*dG+dB*dB)-var);
//float sigmanew = var + k*((0.33*dist)-var);
float sigmanew = var + k*(dist-var);
//limit the variance
//m_aGaussians[pos].sigma = sigmanew>70?70:sigmanew;
//m_aGaussians[pos].sigma = sigmanew>5*m_fSigma?5*m_fSigma:sigmanew;
m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>5*m_fSigma?5*m_fSigma:sigmanew;
//m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>3*m_fSigma?3*m_fSigma:sigmanew;
//m_aGaussians[pos].sigma = m_fSigma;
//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for (int iLocal = iModes;iLocal>0;iLocal--)
{
long posLocal=posPixel + iLocal;
if (weight < (m_aGaussians[posLocal-1].weight))
{
break;
}
else
{
//swap
CvPBGMMGaussian temp = m_aGaussians[posLocal];
m_aGaussians[posLocal] = m_aGaussians[posLocal-1];
m_aGaussians[posLocal-1] = temp;
}
}
//belongs to the mode
/////
}
else
{
weight=m_fOneMinAlpha*weight+m_fPrune;
//check prune
if (weight<-m_fPrune)
{
weight=0.0;
nModes--;
// bPrune=1;
//break;//the components are sorted so we can skip the rest
}
}
//check if it fits the current mode (2.5 sigma)
///////
}
//fit not found yet
/////
else
{
weight=m_fOneMinAlpha*weight+m_fPrune;
//check prune
if (weight<-m_fPrune)
{
weight=0.0;
nModes--;
}
}
totalWeight+=weight;
m_aGaussians[pos].weight=weight;
}
//go through all modes
//////
//renormalize weights
for (int iLocal = 0; iLocal < nModes; iLocal++)
{
m_aGaussians[posPixel+ iLocal].weight = m_aGaussians[posPixel+ iLocal].weight/totalWeight;
}
//make new mode if needed and exit
if (!bFitsPDF)
{
if (nModes==m_nM)
{
//replace the weakest
}
else
{
//add a new one
nModes++;
}
pos=posPixel+nModes-1;
if (nModes==1)
m_aGaussians[pos].weight=1;
else
m_aGaussians[pos].weight=m_fAlphaT;
//renormalize weights
int iLocal;
for (iLocal = 0; iLocal < nModes-1; iLocal++)
{
m_aGaussians[posPixel+ iLocal].weight *=m_fOneMinAlpha;
}
m_aGaussians[pos].muR=red;
m_aGaussians[pos].muG=green;
m_aGaussians[pos].muB=blue;
m_aGaussians[pos].sigma=m_fSigma;
//sort
//find the new place for it
for (iLocal = nModes-1;iLocal>0;iLocal--)
{
long posLocal=posPixel + iLocal;
if (m_fAlphaT < (m_aGaussians[posLocal-1].weight))
{
break;
}
else
{
//swap
CvPBGMMGaussian temp = m_aGaussians[posLocal];
m_aGaussians[posLocal] = m_aGaussians[posLocal-1];
m_aGaussians[posLocal-1] = temp;
}
}
}
//set the number of modes
*pModesUsed=nModes;
return bBackground;
}
2010-12-29 05:15:58 +08:00
static void _icvReplacePixelBackgroundGMM(long pos,
unsigned char* pData,
CvPBGMMGaussian* m_aGaussians)
{
pData[0]=(unsigned char) m_aGaussians[pos].muR;
pData[1]=(unsigned char) m_aGaussians[pos].muG;
pData[2]=(unsigned char) m_aGaussians[pos].muB;
}
2010-12-29 05:15:58 +08:00
static void icvUpdatePixelBackgroundGMM(CvGaussBGStatModel2Data* pGMMData,CvGaussBGStatModel2Params* pGMM, float m_fAlphaT, unsigned char* data,unsigned char* output)
{
int size=pGMMData->nSize;
unsigned char* pDataCurrent=data;
2010-12-29 05:15:58 +08:00
unsigned char* pUsedModes=&pGMMData->rnUsedModes[0];
unsigned char* pDataOutput=output;
//some constants
int m_nM=pGMM->nM;
//float m_fAlphaT=pGMM->fAlphaT;
float m_fTb=pGMM->fTb;//Tb - threshold on the Mahalan. dist.
float m_fTB=pGMM->fTB;//1-TF from the paper
float m_fTg=pGMM->fTg;//Tg - when to generate a new component
float m_fSigma=pGMM->fSigma;//initial sigma
float m_fCT=pGMM->fCT;//CT - complexity reduction prior
float m_fPrune=-m_fAlphaT*m_fCT;
float m_fTau=pGMM->fTau;
2010-12-29 05:15:58 +08:00
CvPBGMMGaussian* m_aGaussians=&pGMMData->rGMM[0];
long posPixel=0;
bool m_bShadowDetection=pGMM->bShadowDetection;
unsigned char m_nShadowDetection=pGMM->nShadowDetection;
//go through the image
for (int i=0;i<size;i++)
{
// retrieve the colors
float red = pDataCurrent[0];
float green = pDataCurrent[1];
float blue = pDataCurrent[2];
//update model+ background subtract
int result = _icvUpdatePixelBackgroundGMM(posPixel, red, green, blue,pUsedModes,m_aGaussians,
m_nM,m_fAlphaT, m_fTb, m_fTB, m_fTg, m_fSigma, m_fPrune);
unsigned char nMLocal=*pUsedModes;
if (m_bShadowDetection)
if (!result)
{
result= _icvRemoveShadowGMM(posPixel, red, green, blue,nMLocal,m_aGaussians,
m_fTb,
m_fTB,
m_fTau);
}
switch (result)
{
case 0:
//foreground
(* pDataOutput)=255;
if (pGMM->bRemoveForeground)
{
_icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians);
}
break;
case 1:
//background
(* pDataOutput)=0;
break;
case 2:
//shadow
(* pDataOutput)=m_nShadowDetection;
if (pGMM->bRemoveForeground)
{
_icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians);
}
break;
}
posPixel+=m_nM;
pDataCurrent+=3;
pDataOutput++;
pUsedModes++;
}
}
2010-12-29 05:15:58 +08:00
namespace cv
{
2010-12-29 05:15:58 +08:00
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2()
{
2010-12-29 05:15:58 +08:00
model = 0;
initialize(Size(), 0);
}
2010-12-29 05:15:58 +08:00
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(double alphaT,
double sigma, int nmixtures, bool postFiltering, double minArea,
bool detectShadows, bool removeForeground, double Tb, double Tg,
double TB, double CT, int shadowValue, double tau)
2010-12-29 05:15:58 +08:00
{
model = 0;
initialize(Size(), alphaT, sigma, nmixtures, postFiltering, minArea,
detectShadows, removeForeground, Tb, Tg, TB, CT, shadowValue, tau);
}
2010-12-29 05:15:58 +08:00
void BackgroundSubtractorMOG2::initialize(Size frameSize, double alphaT,
double sigma, int nmixtures, bool postFiltering, double minArea,
bool detectShadows, bool removeForeground, double Tb, double Tg,
double TB, double CT, int shadowValue, double tau)
2010-12-29 05:15:58 +08:00
{
if(!model)
model = new CvGaussBGModel2;
2010-12-29 05:15:58 +08:00
CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model;
bg_model->params.bRemoveForeground=removeForeground;
bg_model->params.bShadowDetection = detectShadows;
bg_model->params.bPostFiltering = postFiltering;
bg_model->params.minArea = minArea;
bg_model->params.nM = nmixtures;
bg_model->params.fTb = Tb;
bg_model->params.fTB = TB;
bg_model->params.fTg = Tg;
bg_model->params.fSigma = sigma;
bg_model->params.fAlphaT = alphaT;
bg_model->params.fCT = CT;
bg_model->params.nShadowDetection = shadowValue;
bg_model->params.fTau = tau;
int w = frameSize.width;
int h = frameSize.height;
int size = w*h;
if( (bg_model->data.nWidth != w ||
bg_model->data.nHeight != h) &&
w > 0 && h > 0 )
{
2010-12-29 05:15:58 +08:00
bg_model->data.nWidth=w;
bg_model->data.nHeight=h;
bg_model->data.nNBands=3;
bg_model->data.nSize=size;
2010-12-29 05:15:58 +08:00
//GMM for each pixel
bg_model->data.rGMM.resize(size * bg_model->params.nM);
}
2010-12-29 05:15:58 +08:00
//used modes per pixel
bg_model->data.rnUsedModes.resize(0);
bg_model->data.rnUsedModes.resize(size, (uchar)0);
bg_model->params.bInit = true;
bg_model->countFrames = 0;
}
2010-12-29 05:15:58 +08:00
BackgroundSubtractorMOG2::~BackgroundSubtractorMOG2()
{
2010-12-29 05:15:58 +08:00
delete (CvGaussBGModel2*)model;
}
2010-12-29 05:15:58 +08:00
void BackgroundSubtractorMOG2::operator()(const Mat& image0, Mat& fgmask0, double learningRate)
{
CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model;
2010-12-29 05:15:58 +08:00
CV_Assert(bg_model != 0);
Mat image = image0, fgmask = fgmask0;
2010-12-29 05:15:58 +08:00
CV_Assert( image.type() == CV_8UC1 || image.type() == CV_8UC3 );
if( learningRate < 0 )
2010-12-29 05:15:58 +08:00
learningRate = bg_model->params.fAlphaT;
if( learningRate >= 1 )
{
2010-12-29 05:15:58 +08:00
learningRate = 1;
bg_model->params.bInit = true;
}
2010-12-29 05:15:58 +08:00
if( image.size() != Size(bg_model->data.nWidth, bg_model->data.nHeight) )
initialize(image.size(), learningRate, bg_model->params.fSigma,
bg_model->params.nM, bg_model->params.bPostFiltering,
bg_model->params.minArea, bg_model->params.bShadowDetection,
bg_model->params.bRemoveForeground,
bg_model->params.fTb, bg_model->params.fTg, bg_model->params.fTB,
bg_model->params.fCT, bg_model->params.nShadowDetection, bg_model->params.fTau);
//int i, j, k, n;
2010-12-29 05:15:58 +08:00
float alpha = (float)bg_model->params.fAlphaT;
bg_model->countFrames++;
2010-12-29 05:15:58 +08:00
if (bg_model->params.bInit)
{
//faster initial updates
2010-12-29 05:15:58 +08:00
float alphaInit = 1.0f/(2*bg_model->countFrames+1);
if( alphaInit > alpha )
alpha = alphaInit;
else
2010-12-29 05:15:58 +08:00
bg_model->params.bInit = false;
}
2010-12-29 05:15:58 +08:00
if( !image.isContinuous() || image.channels() != 3 )
{
image.release();
image.create(image0.size(), CV_8UC3);
if( image0.type() == image.type() )
image0.copyTo(image);
else
cvtColor(image0, image, CV_GRAY2BGR);
}
2010-12-29 05:15:58 +08:00
if( !fgmask.isContinuous() )
fgmask.release();
fgmask.create(image.size(), CV_8UC1);
icvUpdatePixelBackgroundGMM(&bg_model->data,&bg_model->params,alpha,image.data,fgmask.data);
if( bg_model->params.bPostFiltering )
{
//foreground filtering: filter out small regions
morphologyEx(fgmask, fgmask, CV_MOP_OPEN, Mat());
morphologyEx(fgmask, fgmask, CV_MOP_CLOSE, Mat());
vector<vector<Point> > contours;
findContours(fgmask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
fgmask = Scalar::all(0);
for( size_t i = 0; i < contours.size(); i++ )
{
if( boundingRect(Mat(contours[i])).area() < bg_model->params.minArea )
continue;
drawContours(fgmask, contours, (int)i, Scalar::all(255), -1, 8, vector<Vec4i>(), 1);
}
}
2010-12-29 05:15:58 +08:00
fgmask.copyTo(fgmask0);
}
}
/* End of file. */