mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
230 lines
8.4 KiB
C++
230 lines
8.4 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include <string>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::gpu;
|
||
|
using namespace std;
|
||
|
|
||
|
const string FEATURES2D_DIR = "features2d";
|
||
|
const string IMAGE_FILENAME = "aloe.png";
|
||
|
const string VALID_FILE_NAME = "surf.xml.gz";
|
||
|
|
||
|
class CV_GPU_SURFTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_GPU_SURFTest()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2);
|
||
|
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||
|
const Mat& validDescriptors, const Mat& calcDescriptors);
|
||
|
|
||
|
void emptyDataTest(SURF_GPU& fdetector);
|
||
|
void regressionTest(SURF_GPU& fdetector);
|
||
|
|
||
|
virtual void run(int);
|
||
|
};
|
||
|
|
||
|
void CV_GPU_SURFTest::emptyDataTest(SURF_GPU& fdetector)
|
||
|
{
|
||
|
GpuMat image;
|
||
|
vector<KeyPoint> keypoints;
|
||
|
vector<float> descriptors;
|
||
|
try
|
||
|
{
|
||
|
fdetector(image, GpuMat(), keypoints, descriptors);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
if( !keypoints.empty() )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if( !descriptors.empty() )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty descriptors vector (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2)
|
||
|
{
|
||
|
const float maxPtDif = 1.f;
|
||
|
const float maxSizeDif = 1.f;
|
||
|
const float maxAngleDif = 2.f;
|
||
|
const float maxResponseDif = 0.1f;
|
||
|
|
||
|
float dist = (float)norm( p1.pt - p2.pt );
|
||
|
return (dist < maxPtDif &&
|
||
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
||
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||
|
abs(p1.response - p2.response) < maxResponseDif &&
|
||
|
p1.octave == p2.octave &&
|
||
|
p1.class_id == p2.class_id );
|
||
|
}
|
||
|
|
||
|
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
||
|
const Mat& validDescriptors, const Mat& calcDescriptors)
|
||
|
{
|
||
|
if (validKeypoints.size() != calcKeypoints.size())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Keypoints sizes doesn't equal (validCount = %d, calcCount = %d).\n",
|
||
|
validKeypoints.size(), calcKeypoints.size());
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
if (validDescriptors.size() != calcDescriptors.size())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Descriptors sizes doesn't equal.\n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
for (size_t v = 0; v < validKeypoints.size(); v++)
|
||
|
{
|
||
|
int nearestIdx = -1;
|
||
|
float minDist = std::numeric_limits<float>::max();
|
||
|
|
||
|
for (size_t c = 0; c < calcKeypoints.size(); c++)
|
||
|
{
|
||
|
float curDist = (float)norm(calcKeypoints[c].pt - validKeypoints[v].pt);
|
||
|
if (curDist < minDist)
|
||
|
{
|
||
|
minDist = curDist;
|
||
|
nearestIdx = c;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(minDist >= 0);
|
||
|
if (!isSimilarKeypoints(validKeypoints[v], calcKeypoints[nearestIdx]))
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Bad keypoints accuracy.\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (norm(validDescriptors.row(v), calcDescriptors.row(nearestIdx), NORM_L2) > 1.5f)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Bad descriptors accuracy.\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CV_GPU_SURFTest::regressionTest(SURF_GPU& fdetector)
|
||
|
{
|
||
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||
|
string resFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + VALID_FILE_NAME;
|
||
|
|
||
|
// Read the test image.
|
||
|
GpuMat image(imread(imgFilename, 0));
|
||
|
if (image.empty())
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
FileStorage fs(resFilename, FileStorage::READ);
|
||
|
|
||
|
// Compute keypoints.
|
||
|
GpuMat mask(image.size(), CV_8UC1, Scalar::all(1));
|
||
|
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
|
||
|
vector<KeyPoint> calcKeypoints;
|
||
|
GpuMat calcDespcriptors;
|
||
|
fdetector(image, mask, calcKeypoints, calcDespcriptors);
|
||
|
|
||
|
if (fs.isOpened()) // Compare computed and valid keypoints.
|
||
|
{
|
||
|
// Read validation keypoints set.
|
||
|
vector<KeyPoint> validKeypoints;
|
||
|
Mat validDespcriptors;
|
||
|
read(fs["keypoints"], validKeypoints);
|
||
|
read(fs["descriptors"], validDespcriptors);
|
||
|
if (validKeypoints.empty() || validDespcriptors.empty())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Validation file can not be read.\n");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
compareKeypointSets(validKeypoints, calcKeypoints, validDespcriptors, calcDespcriptors);
|
||
|
}
|
||
|
else // Write detector parameters and computed keypoints as validation data.
|
||
|
{
|
||
|
fs.open(resFilename, FileStorage::WRITE);
|
||
|
if (!fs.isOpened())
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str());
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
write(fs, "keypoints", calcKeypoints);
|
||
|
write(fs, "descriptors", (Mat)calcDespcriptors);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CV_GPU_SURFTest::run( int /*start_from*/ )
|
||
|
{
|
||
|
SURF_GPU fdetector;
|
||
|
|
||
|
emptyDataTest(fdetector);
|
||
|
regressionTest(fdetector);
|
||
|
}
|
||
|
|
||
|
TEST(SURF, empty_data_and_regression) { CV_GPU_SURFTest test; test.safe_run(); }
|