2020-05-06 20:23:55 +08:00
/*
2024-09-09 22:43:15 +08:00
Text detection model ( EAST ) : https : //github.com/argman/EAST
Download link for EAST model : https : //www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
DB detector model :
https : //drive.google.com/uc?export=download&id=17_ABp79PlFt9yPCxSaarVc_DKTmrSGGf
CRNN Text recognition model sourced from : https : //github.com/meijieru/crnn.pytorch
How to convert from . pb to . onnx :
Using classes from : https : //github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
Additional converted ONNX text recognition models available for direct download :
2020-06-27 15:04:00 +08:00
Download link : https : //drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing
2024-09-09 22:43:15 +08:00
These models are taken from : https : //github.com/clovaai/deep-text-recognition-benchmark
2020-06-27 15:04:00 +08:00
2024-09-09 22:43:15 +08:00
Importing and using the CRNN model in PyTorch :
2020-05-06 20:23:55 +08:00
import torch
2020-06-27 15:04:00 +08:00
from models . crnn import CRNN
2024-09-09 22:43:15 +08:00
2020-05-06 20:23:55 +08:00
model = CRNN ( 32 , 1 , 37 , 256 )
model . load_state_dict ( torch . load ( ' crnn . pth ' ) )
dummy_input = torch . randn ( 1 , 1 , 32 , 100 )
torch . onnx . export ( model , dummy_input , " crnn.onnx " , verbose = True )
2020-12-04 02:47:40 +08:00
2024-09-09 22:43:15 +08:00
Usage : . / example_dnn_text_detection DB
2020-05-06 20:23:55 +08:00
*/
2020-12-04 02:47:40 +08:00
# include <iostream>
# include <fstream>
2020-05-06 20:23:55 +08:00
2018-04-24 23:25:43 +08:00
# include <opencv2/imgproc.hpp>
# include <opencv2/highgui.hpp>
# include <opencv2/dnn.hpp>
2024-09-09 22:43:15 +08:00
# include "common.hpp"
2018-04-24 23:25:43 +08:00
using namespace cv ;
2024-09-09 22:43:15 +08:00
using namespace std ;
2018-04-24 23:25:43 +08:00
using namespace cv : : dnn ;
2024-09-09 22:43:15 +08:00
const string about = " Use this script for Text Detection and Recognition using OpenCV. \n \n "
" Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. \n "
" To run: \n "
" \t Example: ./example_dnn_text_detection modelName(i.e. DB or East) --ocr_model=<path to VGG_CTC.onnx> \n \n "
" Detection model path can also be specified using --model argument. \n \n "
" Download ocr model using: python download_models.py OCR \n \n " ;
// Command-line keys to parse the input arguments
string keys =
" { help h | | Print help message. } "
" { input i | right.jpg | Path to an input image. } "
" { @alias | | An alias name of model to extract preprocessing parameters from models.yml file. } "
" { zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters } "
" { ocr_model | | Path to a binary .onnx model for recognition. } "
" { model | | Path to detection model file. } "
" { thr | 0.5 | Confidence threshold for EAST detector. } "
" { nms | 0.4 | Non-maximum suppression threshold for EAST detector. } "
" { binaryThreshold bt | 0.3 | Confidence threshold for the binary map in DB detector. } "
" { polygonThreshold pt | 0.5 | Confidence threshold for polygons in DB detector. } "
" { maxCandidate max | 200 | Max candidates for polygons in DB detector. } "
" { unclipRatio ratio | 2.0 | Unclip ratio for DB detector. } "
" { vocabularyPath vp | alphabet_36.txt | Path to vocabulary file. } " ;
// Function prototype for the four-point perspective transform
static void fourPointsTransform ( const Mat & frame , const Point2f vertices [ ] , Mat & result ) ;
static void processFrame (
const Mat & frame ,
const vector < vector < Point > > & detResults ,
const std : : string & ocr_model ,
bool imreadRGB ,
Mat & board ,
FontFace & fontFace ,
int fontSize ,
int fontWeight ,
const vector < std : : string > & vocabulary
) ;
int main ( int argc , char * * argv ) {
// Setting up command-line parser with the specified keys
2018-04-24 23:25:43 +08:00
CommandLineParser parser ( argc , argv , keys ) ;
2024-09-09 22:43:15 +08:00
if ( ! parser . has ( " @alias " ) | | parser . has ( " help " ) )
2018-04-24 23:25:43 +08:00
{
2024-09-09 22:43:15 +08:00
cout < < about < < endl ;
2018-04-24 23:25:43 +08:00
parser . printMessage ( ) ;
2024-09-09 22:43:15 +08:00
return - 1 ;
2018-04-24 23:25:43 +08:00
}
2024-09-09 22:43:15 +08:00
const string modelName = parser . get < String > ( " @alias " ) ;
const string zooFile = findFile ( parser . get < String > ( " zoo " ) ) ;
2018-04-24 23:25:43 +08:00
2024-09-09 22:43:15 +08:00
keys + = genPreprocArguments ( modelName , zooFile , " " ) ;
keys + = genPreprocArguments ( modelName , zooFile , " ocr_ " ) ;
parser = CommandLineParser ( argc , argv , keys ) ;
parser . about ( about ) ;
// Parsing command-line arguments
2024-11-18 22:32:13 +08:00
String sha1 = parser . get < String > ( " sha1 " ) ;
2024-09-09 22:43:15 +08:00
String ocr_sha1 = parser . get < String > ( " ocr_sha1 " ) ;
String detModelPath = findModel ( parser . get < String > ( " model " ) , sha1 ) ;
String ocr = findModel ( parser . get < String > ( " ocr_model " ) , ocr_sha1 ) ;
2020-12-04 02:47:40 +08:00
int height = parser . get < int > ( " height " ) ;
2024-09-09 22:43:15 +08:00
int width = parser . get < int > ( " width " ) ;
bool imreadRGB = parser . get < bool > ( " rgb " ) ;
2020-12-04 02:47:40 +08:00
String vocPath = parser . get < String > ( " vocabularyPath " ) ;
2024-09-09 22:43:15 +08:00
float binThresh = parser . get < float > ( " binaryThreshold " ) ;
float polyThresh = parser . get < float > ( " polygonThreshold " ) ;
double unclipRatio = parser . get < double > ( " unclipRatio " ) ;
uint maxCandidates = parser . get < uint > ( " maxCandidate " ) ;
float confThreshold = parser . get < float > ( " thr " ) ;
float nmsThreshold = parser . get < float > ( " nms " ) ;
Scalar mean = parser . get < Scalar > ( " mean " ) ;
2018-04-24 23:25:43 +08:00
2024-09-09 22:43:15 +08:00
// Ensuring the provided arguments are valid
if ( ! parser . check ( ) ) {
2018-08-15 19:55:47 +08:00
parser . printErrors ( ) ;
return 1 ;
}
2024-09-09 22:43:15 +08:00
// Asserting detection model path is provided
CV_Assert ( ! detModelPath . empty ( ) ) ;
2020-12-04 02:47:40 +08:00
2024-09-09 22:43:15 +08:00
vector < vector < Point > > detResults ;
// Reading the input image
Mat frame = imread ( samples : : findFile ( parser . get < String > ( " input " ) ) ) ;
Mat board ( frame . size ( ) , frame . type ( ) , Scalar ( 255 , 255 , 255 ) ) ;
int stdSize = 20 ;
int stdWeight = 400 ;
int stdImgSize = 512 ;
int imgWidth = min ( frame . rows , frame . cols ) ;
int size = ( stdSize * imgWidth ) / stdImgSize ;
int weight = ( stdWeight * imgWidth ) / stdImgSize ;
FontFace fontFace ( " sans " ) ;
2020-12-04 02:47:40 +08:00
2024-09-09 22:43:15 +08:00
// Initializing and configuring the text detection model based on the provided config
if ( modelName = = " East " ) {
// EAST Detector initialization
TextDetectionModel_EAST detector ( detModelPath ) ;
detector . setConfidenceThreshold ( confThreshold )
. setNMSThreshold ( nmsThreshold ) ;
// Setting input parameters specific to EAST model
detector . setInputParams ( 1.0 , Size ( width , height ) , mean , true ) ;
// Performing text detection
detector . detect ( frame , detResults ) ;
}
else if ( modelName = = " DB " ) {
// DB Detector initialization
TextDetectionModel_DB detector ( detModelPath ) ;
detector . setBinaryThreshold ( binThresh )
. setPolygonThreshold ( polyThresh )
. setUnclipRatio ( unclipRatio )
. setMaxCandidates ( maxCandidates ) ;
// Setting input parameters specific to DB model
detector . setInputParams ( 1.0 / 255.0 , Size ( width , height ) , mean ) ;
// Performing text detection
detector . detect ( frame , detResults ) ;
}
else {
cout < < " [ERROR]: Unsupported file config for the detector model. Valid values: east/db " < < endl ;
return 1 ;
}
// Reading and storing vocabulary for text recognition
2020-12-04 02:47:40 +08:00
CV_Assert ( ! vocPath . empty ( ) ) ;
2024-09-09 22:43:15 +08:00
ifstream vocFile ;
2020-12-04 02:47:40 +08:00
vocFile . open ( samples : : findFile ( vocPath ) ) ;
CV_Assert ( vocFile . is_open ( ) ) ;
2024-09-09 22:43:15 +08:00
std : : string vocLine ;
vector < std : : string > vocabulary ;
while ( getline ( vocFile , vocLine ) ) {
2020-12-04 02:47:40 +08:00
vocabulary . push_back ( vocLine ) ;
}
2024-09-09 22:43:15 +08:00
processFrame ( frame , detResults , ocr , imreadRGB , board , fontFace , size , weight , vocabulary ) ;
return 0 ;
}
// Performs a perspective transform for a four-point region
static void fourPointsTransform ( const Mat & frame , const Point2f vertices [ ] , Mat & result ) {
const Size outputSize = Size ( 100 , 32 ) ;
// Defining target vertices for the perspective transform
Point2f targetVertices [ 4 ] = {
Point ( 0 , outputSize . height - 1 ) ,
Point ( 0 , 0 ) ,
Point ( outputSize . width - 1 , 0 ) ,
Point ( outputSize . width - 1 , outputSize . height - 1 )
} ;
// Computing the perspective transform matrix
Mat rotationMatrix = getPerspectiveTransform ( vertices , targetVertices ) ;
// Applying the perspective transform to the region
warpPerspective ( frame , result , rotationMatrix , outputSize ) ;
}
void processFrame (
const Mat & frame ,
const vector < vector < Point > > & detResults ,
const std : : string & ocr_model ,
bool imreadRGB ,
Mat & board ,
FontFace & fontFace ,
int fontSize ,
int fontWeight ,
const vector < std : : string > & vocabulary
) {
if ( detResults . size ( ) > 0 ) {
// Text Recognition
Mat recInput ;
if ( ! imreadRGB ) {
cvtColor ( frame , recInput , cv : : COLOR_BGR2GRAY ) ;
} else {
recInput = frame ;
2018-04-24 23:25:43 +08:00
}
2024-09-09 22:43:15 +08:00
vector < vector < Point > > contours ;
for ( uint i = 0 ; i < detResults . size ( ) ; i + + ) {
const auto & quadrangle = detResults [ i ] ;
CV_CheckEQ ( quadrangle . size ( ) , ( size_t ) 4 , " " ) ;
2018-04-24 23:25:43 +08:00
2024-09-09 22:43:15 +08:00
contours . emplace_back ( quadrangle ) ;
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
vector < Point2f > quadrangle_2f ;
for ( int j = 0 ; j < 4 ; j + + )
quadrangle_2f . emplace_back ( detResults [ i ] [ j ] ) ;
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
// Cropping the detected text region using a four-point transform
Mat cropped ;
fourPointsTransform ( recInput , & quadrangle_2f [ 0 ] , cropped ) ;
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
if ( ! ocr_model . empty ( ) ) {
TextRecognitionModel recognizer ( ocr_model ) ;
recognizer . setVocabulary ( vocabulary ) ;
recognizer . setDecodeType ( " CTC-greedy " ) ;
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
// Setting input parameters for the recognition model
double recScale = 1.0 / 127.5 ;
Scalar recMean = Scalar ( 127.5 ) ;
Size recInputSize = Size ( 100 , 32 ) ;
recognizer . setInputParams ( recScale , recInputSize , recMean ) ;
// Recognizing text from the cropped image
string recognitionResult = recognizer . recognize ( cropped ) ;
cout < < i < < " : ' " < < recognitionResult < < " ' " < < endl ;
2020-05-06 20:23:55 +08:00
2024-09-09 22:43:15 +08:00
// Displaying the recognized text on the image
putText ( board , recognitionResult , Point ( detResults [ i ] [ 1 ] . x , detResults [ i ] [ 0 ] . y ) , Scalar ( 0 , 0 , 0 ) , fontFace , fontSize , fontWeight ) ;
}
else {
cout < < " [WARN] Please pass the path to the ocr model using --ocr_model to get the recognised text. " < < endl ;
2020-12-04 02:47:40 +08:00
}
2018-04-24 23:25:43 +08:00
}
2024-09-09 22:43:15 +08:00
// Drawing detected text regions on the image
polylines ( board , contours , true , Scalar ( 200 , 255 , 200 ) , 1 ) ;
polylines ( frame , contours , true , Scalar ( 0 , 255 , 0 ) , 1 ) ;
} else {
cout < < " No Text Detected. " < < endl ;
2018-04-24 23:25:43 +08:00
}
2024-09-09 22:43:15 +08:00
// Displaying the final image with detected and recognized text
Mat stacked ;
hconcat ( frame , board , stacked ) ;
imshow ( " Text Detection and Recognition " , stacked ) ;
waitKey ( 0 ) ;
2020-05-06 20:23:55 +08:00
}