mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 15:08:08 +08:00
490 lines
23 KiB
Python
490 lines
23 KiB
Python
|
import cv2 as cv
|
||
|
import numpy as np
|
||
|
import argparse
|
||
|
from tqdm import tqdm
|
||
|
from functools import partial
|
||
|
from copy import deepcopy
|
||
|
|
||
|
## let use write description of the script and general information how to use it
|
||
|
|
||
|
'''
|
||
|
This sample proposes experimental inpainting sample using Latent Diffusion Model (LDM) for inpainting.
|
||
|
Most of the script is based on the code from the official repository of the LDM model: https://github.com/CompVis/latent-diffusion
|
||
|
|
||
|
Current limitations of the script:
|
||
|
- Slow diffusion sampling
|
||
|
- Not exact reproduction of the results from the original repository (due to issues related deviation in covolution operation.
|
||
|
See issue for more details: https://github.com/opencv/opencv/pull/25973)
|
||
|
|
||
|
Steps for running the script:
|
||
|
|
||
|
1. Firstly generate ONNX graph of the Latent Diffusion Model.
|
||
|
|
||
|
Generate the using this [repo](https://github.com/Abdurrahheem/latent-diffusion/tree/ash/export2onnx) and follow instructions below
|
||
|
|
||
|
- git clone https://github.com/Abdurrahheem/latent-diffusion.git
|
||
|
- cd latent-diffusion
|
||
|
- conda env create -f environment.yaml
|
||
|
- conda activate ldm
|
||
|
- wget -O models/ldm/inpainting_big/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1
|
||
|
- python -m scripts.inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results --export=True
|
||
|
|
||
|
2. Build opencv (preferebly with CUDA support enabled
|
||
|
3. Run the script
|
||
|
|
||
|
- cd opencv/samples/dnn
|
||
|
- python ldm_inpainting.py -e=<path-to-InpaintEncoder.onnx file> -d=<path-to-InpaintDecoder.onnx file> -df=<path-to-LatenDiffusion.onnx file> -i=<path-to-image>
|
||
|
|
||
|
Right after the last command you will be promted with image. You can click on left mouse botton and starting selection a region you would like to be inpainted (delited).
|
||
|
Once you finish marking the region, click on left mouse botton again and press esc botton on your keyboard. The inpainting proccess will start.
|
||
|
|
||
|
Note: If you are running it on CPU it might take a large chank of time.
|
||
|
Also make sure to have abount 15GB of RAM to make proccess faster (other wise swapping will ckick in and everything will be slower)
|
||
|
'''
|
||
|
|
||
|
|
||
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_CUDA)
|
||
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_CUDA)
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='Use this script to run inpainting using Latent Diffusion Model',
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument('--encoder', '-e', type=str, help='Path to encoder network.', default=None)
|
||
|
parser.add_argument('--decoder', '-d', type=str, help='Path to decoder network.', default=None)
|
||
|
parser.add_argument('--diffusor', '-df', type=str, help='Path to diffusion network.', default=None)
|
||
|
parser.add_argument('--image', '-i', type=str, help='Path to input image.', default=None)
|
||
|
parser.add_argument('--samples', '-s', type=int, help='Number of times to sample the model.', default=50)
|
||
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||
|
help="Choose one of computation backends: "
|
||
|
"%d: automatically (by default), "
|
||
|
"%d: OpenCV implementation, "
|
||
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||
|
"%d: CUDA, " % backends)
|
||
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||
|
help='Choose one of target computation devices: '
|
||
|
'%d: CPU target (by default), '
|
||
|
'%d: OpenCL, '
|
||
|
'%d: NCS2 VPU, '
|
||
|
'%d: HDDL VPU, '
|
||
|
'%d: CUDA ' % targets)
|
||
|
|
||
|
def make_batch(image, mask):
|
||
|
image = image.astype(np.float32)/255.0
|
||
|
image = image[np.newaxis, ...].transpose(0,3,1,2)
|
||
|
|
||
|
mask = mask.astype(np.float32)/255.0
|
||
|
mask = mask[np.newaxis, np.newaxis, ...]
|
||
|
mask[mask < 0.5] = 0
|
||
|
mask[mask >= 0.5] = 1
|
||
|
|
||
|
masked_image = (1-mask)*image
|
||
|
|
||
|
batch = {"image": image, "mask": mask, "masked_image": masked_image}
|
||
|
for k in batch:
|
||
|
batch[k] = batch[k]*2.0-1.0
|
||
|
return batch
|
||
|
|
||
|
def noise_like(shape, repeat=False):
|
||
|
repeat_noise = lambda: np.random.randn((1, *shape[1:])).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||
|
noise = lambda: np.random.randn(*shape)
|
||
|
return repeat_noise() if repeat else noise()
|
||
|
|
||
|
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||
|
if ddim_discr_method == 'uniform':
|
||
|
c = num_ddpm_timesteps // num_ddim_timesteps
|
||
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||
|
elif ddim_discr_method == 'quad':
|
||
|
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||
|
else:
|
||
|
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||
|
|
||
|
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||
|
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||
|
steps_out = ddim_timesteps + 1
|
||
|
if verbose:
|
||
|
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||
|
return steps_out
|
||
|
|
||
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||
|
# select alphas for computing the variance schedule
|
||
|
alphas = alphacums[ddim_timesteps]
|
||
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||
|
|
||
|
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||
|
if verbose:
|
||
|
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||
|
print(f'For the chosen value of eta, which is {eta}, '
|
||
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||
|
return sigmas, alphas, alphas_prev
|
||
|
|
||
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||
|
if schedule == "linear":
|
||
|
betas = (
|
||
|
np.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep).astype(np.float64) ** 2
|
||
|
)
|
||
|
|
||
|
elif schedule == "cosine":
|
||
|
timesteps = (
|
||
|
np.arange(n_timestep + 1).astype(np.float64) / n_timestep + cosine_s
|
||
|
)
|
||
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||
|
alphas = np.cos(alphas).pow(2)
|
||
|
alphas = alphas / alphas[0]
|
||
|
betas = 1 - alphas[1:] / alphas[:-1]
|
||
|
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||
|
|
||
|
elif schedule == "sqrt_linear":
|
||
|
betas = np.linspace(linear_start, linear_end, n_timestep).astype(np.float64)
|
||
|
elif schedule == "sqrt":
|
||
|
betas = np.linspace(linear_start, linear_end, n_timestep).astype(np.float64) ** 0.5
|
||
|
else:
|
||
|
raise ValueError(f"schedule '{schedule}' unknown.")
|
||
|
return betas
|
||
|
|
||
|
class DDIMSampler(object):
|
||
|
def __init__(self, model, schedule="linear", ddpm_num_timesteps=1000):
|
||
|
super().__init__()
|
||
|
self.model = model
|
||
|
self.ddpm_num_timesteps = ddpm_num_timesteps
|
||
|
self.schedule = schedule
|
||
|
|
||
|
def register_buffer(self, name, attr):
|
||
|
setattr(self, name, attr)
|
||
|
|
||
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||
|
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||
|
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||
|
alphas_cumprod = self.model.alphas_cumprod
|
||
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||
|
to_numpy = partial(np.array, copy=True, dtype=np.float32)
|
||
|
|
||
|
self.register_buffer('betas', to_numpy(self.model.betas))
|
||
|
self.register_buffer('alphas_cumprod', to_numpy(alphas_cumprod))
|
||
|
self.register_buffer('alphas_cumprod_prev', to_numpy(self.model.alphas_cumprod_prev))
|
||
|
|
||
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||
|
self.register_buffer('sqrt_alphas_cumprod', to_numpy(np.sqrt(alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_numpy(np.sqrt(1. - alphas_cumprod)))
|
||
|
self.register_buffer('log_one_minus_alphas_cumprod', to_numpy(np.log(1. - alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_numpy(np.sqrt(1. / alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_numpy(np.sqrt(1. / alphas_cumprod - 1)))
|
||
|
|
||
|
# ddim sampling parameters
|
||
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod,
|
||
|
ddim_timesteps=self.ddim_timesteps,
|
||
|
eta=ddim_eta,verbose=verbose)
|
||
|
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||
|
self.register_buffer('ddim_alphas', ddim_alphas)
|
||
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||
|
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||
|
sigmas_for_original_sampling_steps = ddim_eta * np.sqrt(
|
||
|
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||
|
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||
|
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||
|
|
||
|
def sample(self,
|
||
|
S,
|
||
|
batch_size,
|
||
|
shape,
|
||
|
conditioning=None,
|
||
|
eta=0.,
|
||
|
temperature=1.,
|
||
|
verbose=True,
|
||
|
x_T=None,
|
||
|
log_every_t=100,
|
||
|
unconditional_guidance_scale=1.,
|
||
|
unconditional_conditioning=None,
|
||
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||
|
**kwargs
|
||
|
):
|
||
|
if conditioning is not None:
|
||
|
if isinstance(conditioning, dict):
|
||
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||
|
if cbs != batch_size:
|
||
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||
|
else:
|
||
|
if conditioning.shape[0] != batch_size:
|
||
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||
|
|
||
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||
|
# sampling
|
||
|
C, H, W = shape
|
||
|
size = (batch_size, C, H, W)
|
||
|
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||
|
|
||
|
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||
|
ddim_use_original_steps=False,
|
||
|
temperature=temperature,
|
||
|
x_T=x_T,
|
||
|
log_every_t=log_every_t,
|
||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||
|
unconditional_conditioning=unconditional_conditioning,
|
||
|
)
|
||
|
return samples, intermediates
|
||
|
|
||
|
def ddim_sampling(self, cond, shape,
|
||
|
x_T=None, ddim_use_original_steps=False,
|
||
|
timesteps=None,log_every_t=100, temperature=1.,
|
||
|
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
||
|
b = shape[0]
|
||
|
if x_T is None:
|
||
|
img = np.random.randn(*shape)
|
||
|
else:
|
||
|
img = x_T
|
||
|
|
||
|
if timesteps is None:
|
||
|
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||
|
elif timesteps is not None and not ddim_use_original_steps:
|
||
|
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||
|
timesteps = self.ddim_timesteps[:subset_end]
|
||
|
|
||
|
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||
|
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
||
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||
|
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||
|
|
||
|
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
||
|
|
||
|
for i, step in enumerate(iterator):
|
||
|
index = total_steps - i - 1
|
||
|
ts = np.full((b, ), step, dtype=np.int64)
|
||
|
|
||
|
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||
|
temperature=temperature, unconditional_guidance_scale=unconditional_guidance_scale,
|
||
|
unconditional_conditioning=unconditional_conditioning)
|
||
|
img, pred_x0 = outs
|
||
|
if index % log_every_t == 0 or index == total_steps - 1:
|
||
|
intermediates['x_inter'].append(img)
|
||
|
intermediates['pred_x0'].append(pred_x0)
|
||
|
|
||
|
return img, intermediates
|
||
|
|
||
|
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False,
|
||
|
temperature=1., unconditional_guidance_scale=1., unconditional_conditioning=None):
|
||
|
b = x.shape[0]
|
||
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||
|
e_t = self.model.apply_model(x, t, c)
|
||
|
|
||
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||
|
# select parameters corresponding to the currently considered timestep
|
||
|
a_t = np.full((b, 1, 1, 1), alphas[index])
|
||
|
a_prev = np.full((b, 1, 1, 1), alphas_prev[index])
|
||
|
sigma_t = np.full((b, 1, 1, 1), sigmas[index])
|
||
|
sqrt_one_minus_at = np.full((b, 1, 1, 1), sqrt_one_minus_alphas[index])
|
||
|
|
||
|
# current prediction for x_0
|
||
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / np.sqrt(a_t)
|
||
|
# direction pointing to x_t
|
||
|
dir_xt = np.sqrt(1. - a_prev - sigma_t**2) * e_t
|
||
|
noise = sigma_t * noise_like(x.shape, repeat_noise) * temperature
|
||
|
x_prev = np.sqrt(a_prev) * pred_x0 + dir_xt + noise
|
||
|
return x_prev, pred_x0
|
||
|
|
||
|
|
||
|
class DDIMInpainter(object):
|
||
|
def __init__(self,
|
||
|
args,
|
||
|
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
||
|
parameterization="eps", # all assuming fixed variance schedules
|
||
|
linear_start=0.0015,
|
||
|
linear_end=0.0205,
|
||
|
conditioning_key="concat",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.v_posterior = v_posterior
|
||
|
self.parameterization = parameterization
|
||
|
self.conditioning_key = conditioning_key
|
||
|
self.register_schedule(linear_start=linear_start, linear_end=linear_end)
|
||
|
|
||
|
self.encoder = cv.dnn.readNet(args.encoder)
|
||
|
self.decoder = cv.dnn.readNet(args.decoder)
|
||
|
self.diffusor = cv.dnn.readNet(args.diffusor)
|
||
|
self.sampler = DDIMSampler(self, ddpm_num_timesteps=self.num_timesteps)
|
||
|
self.set_backend(backend=args.backend, target=args.target)
|
||
|
|
||
|
def set_backend(self, backend=cv.dnn.DNN_BACKEND_DEFAULT, target=cv.dnn.DNN_TARGET_CPU):
|
||
|
self.encoder.setPreferableBackend(backend)
|
||
|
self.encoder.setPreferableTarget(target)
|
||
|
|
||
|
self.decoder.setPreferableBackend(backend)
|
||
|
self.decoder.setPreferableTarget(target)
|
||
|
|
||
|
self.diffusor.setPreferableBackend(backend)
|
||
|
self.diffusor.setPreferableTarget(target)
|
||
|
|
||
|
def apply_diffusor(self, x, timestep, cond):
|
||
|
|
||
|
x = np.concatenate([x, cond], axis=1)
|
||
|
x = cv.Mat(x.astype(np.float32))
|
||
|
timestep = cv.Mat(timestep.astype(np.int64))
|
||
|
names = ["xc", "t"]
|
||
|
self.diffusor.setInputsNames(names)
|
||
|
self.diffusor.setInput(x, names[0])
|
||
|
self.diffusor.setInput(timestep, names[1])
|
||
|
output = self.diffusor.forward()
|
||
|
return output
|
||
|
|
||
|
def register_buffer(self, name, attr):
|
||
|
setattr(self, name, attr)
|
||
|
|
||
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||
|
if given_betas is not None:
|
||
|
betas = given_betas
|
||
|
else:
|
||
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
||
|
cosine_s=cosine_s)
|
||
|
alphas = 1. - betas
|
||
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||
|
|
||
|
timesteps, = betas.shape
|
||
|
self.num_timesteps = int(timesteps)
|
||
|
self.linear_start = linear_start
|
||
|
self.linear_end = linear_end
|
||
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
||
|
|
||
|
to_numpy = partial(np.array, dtype=np.float32)
|
||
|
|
||
|
self.register_buffer('betas', to_numpy(betas))
|
||
|
self.register_buffer('alphas_cumprod', to_numpy(alphas_cumprod))
|
||
|
self.register_buffer('alphas_cumprod_prev', to_numpy(alphas_cumprod_prev))
|
||
|
|
||
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||
|
self.register_buffer('sqrt_alphas_cumprod', to_numpy(np.sqrt(alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_numpy(np.sqrt(1. - alphas_cumprod)))
|
||
|
self.register_buffer('log_one_minus_alphas_cumprod', to_numpy(np.log(1. - alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_numpy(np.sqrt(1. / alphas_cumprod)))
|
||
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_numpy(np.sqrt(1. / alphas_cumprod - 1)))
|
||
|
|
||
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||
|
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
||
|
1. - alphas_cumprod) + self.v_posterior * betas
|
||
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
||
|
self.register_buffer('posterior_variance', to_numpy(posterior_variance))
|
||
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
||
|
self.register_buffer('posterior_log_variance_clipped', to_numpy(np.log(np.maximum(posterior_variance, 1e-20))))
|
||
|
self.register_buffer('posterior_mean_coef1', to_numpy(
|
||
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
||
|
self.register_buffer('posterior_mean_coef2', to_numpy(
|
||
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
||
|
|
||
|
if self.parameterization == "eps":
|
||
|
lvlb_weights = self.betas ** 2 / (
|
||
|
2 * self.posterior_variance * to_numpy(alphas) * (1 - self.alphas_cumprod))
|
||
|
elif self.parameterization == "x0":
|
||
|
lvlb_weights = 0.5 * np.sqrt(alphas_cumprod) / (2. * 1 - alphas_cumprod)
|
||
|
else:
|
||
|
raise NotImplementedError("mu not supported")
|
||
|
# TODO how to choose this term
|
||
|
lvlb_weights[0] = lvlb_weights[1]
|
||
|
self.register_buffer('lvlb_weights', lvlb_weights)
|
||
|
assert not np.isnan(self.lvlb_weights).all()
|
||
|
|
||
|
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
||
|
|
||
|
if isinstance(cond, dict):
|
||
|
# hybrid case, cond is exptected to be a dict
|
||
|
pass
|
||
|
else:
|
||
|
# if not isinstance(cond, list):
|
||
|
# cond = [cond]
|
||
|
key = 'c_concat' if self.conditioning_key == 'concat' else 'c_crossattn'
|
||
|
cond = {key: cond}
|
||
|
|
||
|
x_recon = self.apply_diffusor(x_noisy, t, cond['c_concat'])
|
||
|
|
||
|
if isinstance(x_recon, tuple) and not return_ids:
|
||
|
return x_recon[0]
|
||
|
else:
|
||
|
return x_recon
|
||
|
|
||
|
def __call__(self, image : np.ndarray, mask : np.ndarray, S : int = 50) -> np.ndarray:
|
||
|
|
||
|
# Encode the image and mask
|
||
|
self.encoder.setInput(image)
|
||
|
c = self.encoder.forward()
|
||
|
cc = cv.resize(np.squeeze(mask), dsize=(c.shape[3], c.shape[2]), interpolation=cv.INTER_NEAREST) #TODO:check for correcteness of intepolation
|
||
|
cc = cc[None,None]
|
||
|
c = np.concatenate([c, cc], axis=1)
|
||
|
|
||
|
shape = (c.shape[1] - 1,) + c.shape[2:]
|
||
|
|
||
|
# Sample from the model
|
||
|
samples_ddim, _ = self.sampler.sample(
|
||
|
S=S,
|
||
|
conditioning=c,
|
||
|
batch_size=c.shape[0],
|
||
|
shape=shape,
|
||
|
verbose=False)
|
||
|
|
||
|
## Decode the sample
|
||
|
samples_ddim = samples_ddim.astype(np.float32)
|
||
|
samples_ddim = cv.Mat(samples_ddim)
|
||
|
self.decoder.setInput(samples_ddim)
|
||
|
x_samples_ddim = self.decoder.forward()
|
||
|
|
||
|
image = np.clip((image + 1.0) / 2.0, a_min=0.0, a_max=1.0)
|
||
|
mask = np.clip((mask + 1.0) / 2.0, a_min=0.0, a_max=1.0)
|
||
|
predicted_image = np.clip((x_samples_ddim + 1.0) / 2.0, a_min=0.0, a_max=1.0)
|
||
|
|
||
|
inpainted = (1 - mask) * image + mask * predicted_image
|
||
|
inpainted = np.transpose(inpainted, (0, 2, 3, 1)) * 255
|
||
|
|
||
|
return inpainted
|
||
|
|
||
|
def create_mask(img, radius=20):
|
||
|
drawing = False # True if the mouse is pressed
|
||
|
counter = 0
|
||
|
|
||
|
# Mouse callback function
|
||
|
def draw_circle(event, x, y, flags, param):
|
||
|
nonlocal drawing, counter, radius
|
||
|
|
||
|
if event == cv.EVENT_LBUTTONDOWN:
|
||
|
drawing = True if counter % 2 == 0 else False
|
||
|
counter += 1
|
||
|
cv.circle(img, (x, y), radius, (255, 255, 255), -1)
|
||
|
cv.circle(mask, (x, y), radius, 255, -1)
|
||
|
|
||
|
elif event == cv.EVENT_MOUSEMOVE:
|
||
|
if drawing:
|
||
|
cv.circle(img, (x, y), radius, (255, 255, 255), -1)
|
||
|
cv.circle(mask, (x, y), radius, 255, -1)
|
||
|
|
||
|
mask = np.zeros((img.shape[0], img.shape[1]), np.uint8)
|
||
|
cv.namedWindow('image')
|
||
|
cv.setMouseCallback('image', draw_circle)
|
||
|
while True:
|
||
|
cv.imshow('image', img)
|
||
|
if cv.waitKey(1) & 0xFF == 27: # Press 'ESC' to exit
|
||
|
break
|
||
|
|
||
|
cv.destroyAllWindows()
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
|
||
|
image = cv.imread(args.image)
|
||
|
mask = create_mask(deepcopy(image))
|
||
|
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
||
|
|
||
|
batch = make_batch(image, mask)
|
||
|
image, mask, masked_image = batch["image"], batch["mask"], batch["masked_image"]
|
||
|
|
||
|
model = DDIMInpainter(args)
|
||
|
result = model(masked_image, mask, S=args.samples)
|
||
|
result = np.squeeze(result)
|
||
|
# save the result in the directore of args.image
|
||
|
cv.imwrite(args.image.replace(".png", "_inpainted.png"), result[..., ::-1])
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = parser.parse_args()
|
||
|
main(args)
|