opencv/modules/videostab/src/fast_marching.cpp

100 lines
2.3 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#include "opencv2/videostab/fast_marching.hpp"
using namespace std;
namespace cv
{
namespace videostab
{
float FastMarchingMethod::solve(int x1, int y1, int x2, int y2) const
{
float sol = inf_;
if (y1 >=0 && y1 < flag_.rows && x1 >= 0 && x1 < flag_.cols && flag_(y1,x1) == KNOWN)
{
float t1 = dist_(y1,x1);
if (y2 >=0 && y2 < flag_.rows && x2 >= 0 && x2 < flag_.cols && flag_(y2,x2) == KNOWN)
{
float t2 = dist_(y2,x2);
float r = sqrt(2 - sqr(t1 - t2));
float s = (t1 + t2 - r) / 2;
if (s >= t1 && s >= t2)
sol = s;
else
{
s += r;
if (s >= t1 && s >= t2)
sol = s;
}
}
else
sol = 1 + t1;
}
else if (y2 >=0 && y2 < flag_.rows && x2 >= 0 && x2 < flag_.cols && flag_(y2,x2) == KNOWN)
sol = 1 + dist_(y2,x1);
return sol;
}
void FastMarchingMethod::heapUp(int idx)
{
int p = (idx-1)/2;
while (idx > 0 && narrowBand_[idx] < narrowBand_[p])
{
std::swap(indexOf(narrowBand_[p]), indexOf(narrowBand_[idx]));
std::swap(narrowBand_[p], narrowBand_[idx]);
idx = p;
p = (idx-1)/2;
}
}
void FastMarchingMethod::heapDown(int idx)
{
int l, r, smallest;
while (true)
{
l = 2*idx+1;
r = 2*idx+2;
smallest = idx;
if (l < size_ && narrowBand_[l] < narrowBand_[smallest]) smallest = l;
if (r < size_ && narrowBand_[r] < narrowBand_[smallest]) smallest = r;
if (smallest == idx) break;
else
{
std::swap(indexOf(narrowBand_[idx]), indexOf(narrowBand_[smallest]));
std::swap(narrowBand_[idx], narrowBand_[smallest]);
idx = smallest;
}
}
}
void FastMarchingMethod::heapAdd(const DXY &dxy)
{
if (static_cast<int>(narrowBand_.size()) < size_ + 1)
narrowBand_.resize(size_*2 + 1);
narrowBand_[size_] = dxy;
indexOf(dxy) = size_++;
heapUp(size_-1);
}
void FastMarchingMethod::heapRemoveMin()
{
if (size_ > 0)
{
size_--;
std::swap(indexOf(narrowBand_[0]), indexOf(narrowBand_[size_]));
std::swap(narrowBand_[0], narrowBand_[size_]);
heapDown(0);
}
}
} // namespace videostab
} // namespace cv