mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 15:49:32 +08:00
101 lines
3.2 KiB
C++
101 lines
3.2 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
TEST(Calib3d_EstimateTranslation3D, test4Points)
|
||
|
{
|
||
|
Matx13d trans;
|
||
|
cv::randu(trans, Scalar(1), Scalar(3));
|
||
|
|
||
|
// setting points that are no in the same line
|
||
|
|
||
|
Mat fpts(1, 4, CV_32FC3);
|
||
|
Mat tpts(1, 4, CV_32FC3);
|
||
|
|
||
|
RNG& rng = theRNG();
|
||
|
fpts.at<Point3f>(0) = Point3f(rng.uniform(1.0f, 2.0f), rng.uniform(1.0f, 2.0f), rng.uniform(5.0f, 6.0f));
|
||
|
fpts.at<Point3f>(1) = Point3f(rng.uniform(3.0f, 4.0f), rng.uniform(3.0f, 4.0f), rng.uniform(5.0f, 6.0f));
|
||
|
fpts.at<Point3f>(2) = Point3f(rng.uniform(1.0f, 2.0f), rng.uniform(3.0f, 4.0f), rng.uniform(5.0f, 6.0f));
|
||
|
fpts.at<Point3f>(3) = Point3f(rng.uniform(3.0f, 4.0f), rng.uniform(1.0f, 2.0f), rng.uniform(5.0f, 6.0f));
|
||
|
|
||
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + 4, tpts.ptr<Point3f>(),
|
||
|
[&] (const Point3f& p) -> Point3f
|
||
|
{
|
||
|
return Point3f((float)(p.x + trans(0, 0)),
|
||
|
(float)(p.y + trans(0, 1)),
|
||
|
(float)(p.z + trans(0, 2)));
|
||
|
}
|
||
|
);
|
||
|
|
||
|
Matx13d trans_est;
|
||
|
vector<uchar> outliers;
|
||
|
int res = estimateTranslation3D(fpts, tpts, trans_est, outliers);
|
||
|
EXPECT_GT(res, 0);
|
||
|
|
||
|
const double thres = 1e-3;
|
||
|
|
||
|
EXPECT_LE(cvtest::norm(trans_est, trans, NORM_INF), thres)
|
||
|
<< "aff est: " << trans_est << endl
|
||
|
<< "aff ref: " << trans;
|
||
|
}
|
||
|
|
||
|
TEST(Calib3d_EstimateTranslation3D, testNPoints)
|
||
|
{
|
||
|
Matx13d trans;
|
||
|
cv::randu(trans, Scalar(-2), Scalar(2));
|
||
|
|
||
|
// setting points that are no in the same line
|
||
|
|
||
|
const int n = 100;
|
||
|
const int m = 3*n/5;
|
||
|
const Point3f shift_outl = Point3f(15, 15, 15);
|
||
|
const float noise_level = 20.f;
|
||
|
|
||
|
Mat fpts(1, n, CV_32FC3);
|
||
|
Mat tpts(1, n, CV_32FC3);
|
||
|
|
||
|
randu(fpts, Scalar::all(0), Scalar::all(100));
|
||
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + n, tpts.ptr<Point3f>(),
|
||
|
[&] (const Point3f& p) -> Point3f
|
||
|
{
|
||
|
return Point3f((float)(p.x + trans(0, 0)),
|
||
|
(float)(p.y + trans(0, 1)),
|
||
|
(float)(p.z + trans(0, 2)));
|
||
|
}
|
||
|
);
|
||
|
|
||
|
/* adding noise*/
|
||
|
std::transform(tpts.ptr<Point3f>() + m, tpts.ptr<Point3f>() + n, tpts.ptr<Point3f>() + m,
|
||
|
[&] (const Point3f& pt) -> Point3f
|
||
|
{
|
||
|
Point3f p = pt + shift_outl;
|
||
|
RNG& rng = theRNG();
|
||
|
return Point3f(p.x + noise_level * (float)rng,
|
||
|
p.y + noise_level * (float)rng,
|
||
|
p.z + noise_level * (float)rng);
|
||
|
}
|
||
|
);
|
||
|
|
||
|
Matx13d trans_est;
|
||
|
vector<uchar> outl;
|
||
|
int res = estimateTranslation3D(fpts, tpts, trans_est, outl);
|
||
|
EXPECT_GT(res, 0);
|
||
|
|
||
|
const double thres = 1e-4;
|
||
|
EXPECT_LE(cvtest::norm(trans_est, trans, NORM_INF), thres)
|
||
|
<< "aff est: " << trans_est << endl
|
||
|
<< "aff ref: " << trans;
|
||
|
|
||
|
bool outl_good = count(outl.begin(), outl.end(), 1) == m &&
|
||
|
m == accumulate(outl.begin(), outl.begin() + m, 0);
|
||
|
|
||
|
EXPECT_TRUE(outl_good);
|
||
|
}
|
||
|
|
||
|
}} // namespace
|