2019-03-29 21:42:58 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
#ifndef __OPENCV_TEST_COMMON_HPP__
|
|
|
|
#define __OPENCV_TEST_COMMON_HPP__
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
#include "opencv2/dnn/utils/inference_engine.hpp"
|
|
|
|
|
2018-08-30 22:53:41 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#endif
|
|
|
|
|
2019-12-02 21:16:06 +08:00
|
|
|
// src/op_inf_engine.hpp
|
|
|
|
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
|
|
|
#define INF_ENGINE_VER_MAJOR_GE(ver) (((INF_ENGINE_RELEASE) / 10000) >= ((ver) / 10000))
|
|
|
|
#define INF_ENGINE_VER_MAJOR_LT(ver) (((INF_ENGINE_RELEASE) / 10000) < ((ver) / 10000))
|
|
|
|
#define INF_ENGINE_VER_MAJOR_LE(ver) (((INF_ENGINE_RELEASE) / 10000) <= ((ver) / 10000))
|
|
|
|
#define INF_ENGINE_VER_MAJOR_EQ(ver) (((INF_ENGINE_RELEASE) / 10000) == ((ver) / 10000))
|
|
|
|
|
|
|
|
|
2019-06-15 20:17:25 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_HALIDE "dnn_skip_halide"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_OPENCL "dnn_skip_ocl"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 "dnn_skip_ocl_fp16"
|
2019-12-02 21:16:06 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER "dnn_skip_ie_nn_builder"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_NGRAPH "dnn_skip_ie_ngraph"
|
2019-06-15 20:17:25 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE "dnn_skip_ie"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_2018R5 "dnn_skip_ie_2018r5"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_2019R1 "dnn_skip_ie_2019r1"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 "dnn_skip_ie_2019r1_1"
|
2019-07-25 14:57:49 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_2019R2 "dnn_skip_ie_2019r2"
|
2019-10-04 15:29:27 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_2019R3 "dnn_skip_ie_2019r3"
|
2019-06-15 20:17:25 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL "dnn_skip_ie_ocl"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 "dnn_skip_ie_ocl_fp16"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 "dnn_skip_ie_myriad2"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X "dnn_skip_ie_myriadx"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
|
|
|
|
|
2019-06-27 04:17:19 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_VULKAN "dnn_skip_vulkan"
|
2019-06-15 20:17:25 +08:00
|
|
|
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
#define CV_TEST_TAG_DNN_SKIP_CUDA "dnn_skip_cuda"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_CUDA_FP16 "dnn_skip_cuda_fp16"
|
|
|
|
#define CV_TEST_TAG_DNN_SKIP_CUDA_FP32 "dnn_skip_cuda_fp32"
|
2019-03-29 21:42:58 +08:00
|
|
|
|
2019-06-15 20:17:25 +08:00
|
|
|
|
2019-12-02 21:16:06 +08:00
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2018R5
|
|
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
|
|
|
# if INF_ENGINE_RELEASE < 2019010100
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1
|
|
|
|
# else
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1
|
|
|
|
# endif
|
|
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2
|
|
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R3
|
|
|
|
#endif
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
|
|
#ifndef CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
|
|
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE
|
|
|
|
#endif
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
|
2018-08-02 22:59:45 +08:00
|
|
|
namespace cv { namespace dnn {
|
2018-09-05 00:35:38 +08:00
|
|
|
CV__DNN_INLINE_NS_BEGIN
|
2018-08-02 22:59:45 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
void PrintTo(const cv::dnn::Backend& v, std::ostream* os);
|
|
|
|
void PrintTo(const cv::dnn::Target& v, std::ostream* os);
|
2018-08-02 22:59:45 +08:00
|
|
|
using opencv_test::tuple;
|
|
|
|
using opencv_test::get;
|
2019-03-29 21:42:58 +08:00
|
|
|
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os);
|
2018-08-02 22:59:45 +08:00
|
|
|
|
2018-09-05 00:35:38 +08:00
|
|
|
CV__DNN_INLINE_NS_END
|
2019-03-29 21:42:58 +08:00
|
|
|
}} // namespace cv::dnn
|
2018-08-02 22:59:45 +08:00
|
|
|
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
namespace opencv_test {
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2019-06-15 20:17:25 +08:00
|
|
|
void initDNNTests();
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
using namespace cv::dnn;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
static inline const std::string &getOpenCVExtraDir()
|
2018-04-18 22:26:54 +08:00
|
|
|
{
|
2019-03-29 21:42:58 +08:00
|
|
|
return cvtest::TS::ptr()->get_data_path();
|
2018-04-18 22:26:54 +08:00
|
|
|
}
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
void normAssert(
|
|
|
|
cv::InputArray ref, cv::InputArray test, const char *comment = "",
|
|
|
|
double l1 = 0.00001, double lInf = 0.0001);
|
2018-04-18 22:26:54 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m);
|
2018-04-18 22:26:54 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
void normAssertDetections(
|
|
|
|
const std::vector<int>& refClassIds,
|
|
|
|
const std::vector<float>& refScores,
|
|
|
|
const std::vector<cv::Rect2d>& refBoxes,
|
|
|
|
const std::vector<int>& testClassIds,
|
|
|
|
const std::vector<float>& testScores,
|
|
|
|
const std::vector<cv::Rect2d>& testBoxes,
|
|
|
|
const char *comment = "", double confThreshold = 0.0,
|
|
|
|
double scores_diff = 1e-5, double boxes_iou_diff = 1e-4);
|
2018-04-18 22:26:54 +08:00
|
|
|
|
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
|
|
|
// where N is a number of detections and an every detection is represented by
|
|
|
|
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
2019-03-29 21:42:58 +08:00
|
|
|
void normAssertDetections(
|
|
|
|
cv::Mat ref, cv::Mat out, const char *comment = "",
|
|
|
|
double confThreshold = 0.0, double scores_diff = 1e-5,
|
|
|
|
double boxes_iou_diff = 1e-4);
|
2017-10-28 00:01:41 +08:00
|
|
|
|
2020-12-04 02:47:40 +08:00
|
|
|
// For text detection networks
|
|
|
|
// Curved text polygon is not supported in the current version.
|
|
|
|
// (concave polygon is invalid input to intersectConvexConvex)
|
|
|
|
void normAssertTextDetections(
|
|
|
|
const std::vector<std::vector<Point>>& gtPolys,
|
|
|
|
const std::vector<std::vector<Point>>& testPolys,
|
|
|
|
const char *comment = "", double boxes_iou_diff = 1e-4);
|
|
|
|
|
2019-05-29 20:29:31 +08:00
|
|
|
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content);
|
2017-10-28 00:01:41 +08:00
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
bool validateVPUType();
|
|
|
|
#endif
|
2018-08-30 22:53:41 +08:00
|
|
|
|
2018-12-05 23:11:45 +08:00
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
2018-08-30 22:53:41 +08:00
|
|
|
bool withInferenceEngine = true,
|
|
|
|
bool withHalide = false,
|
Merge pull request #12703 from wzw-intel:vkcom
* dnn: Add a Vulkan based backend
This commit adds a new backend "DNN_BACKEND_VKCOM" and a
new target "DNN_TARGET_VULKAN". VKCOM means vulkan based
computation library.
This backend uses Vulkan API and SPIR-V shaders to do
the inference computation for layers. The layer types
that implemented in DNN_BACKEND_VKCOM include:
Conv, Concat, ReLU, LRN, PriorBox, Softmax, MaxPooling,
AvePooling, Permute
This is just a beginning work for Vulkan in OpenCV DNN,
more layer types will be supported and performance
tuning is on the way.
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/vulkan: Add FindVulkan.cmake to detect Vulkan SDK
In order to build dnn with Vulkan support, need installing
Vulkan SDK and setting environment variable "VULKAN_SDK" and
add "-DWITH_VULKAN=ON" to cmake command.
You can download Vulkan SDK from:
https://vulkan.lunarg.com/sdk/home#linux
For how to install, see
https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html
respectively for linux, windows and mac.
To run the vulkan backend, also need installing mesa driver.
On Ubuntu, use this command 'sudo apt-get install mesa-vulkan-drivers'
To test, use command '$BUILD_DIR/bin/opencv_test_dnn --gtest_filter=*VkCom*'
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/Vulkan: dynamically load Vulkan runtime
No compile-time dependency on Vulkan library.
If Vulkan runtime is unavailable, fallback to CPU path.
Use environment "OPENCL_VULKAN_RUNTIME" to specify path to your
own vulkan runtime library.
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/Vulkan: Add a python script to compile GLSL shaders to SPIR-V shaders
The SPIR-V shaders are in format of text-based 32-bit hexadecimal
numbers, and inserted into .cpp files as unsigned int32 array.
* dnn/Vulkan: Put Vulkan headers into 3rdparty directory and some other fixes
Vulkan header files are copied from
https://github.com/KhronosGroup/Vulkan-Docs/tree/master/include/vulkan
to 3rdparty/include
Fix the Copyright declaration issue.
Refine OpenCVDetectVulkan.cmake
* dnn/Vulkan: Add vulkan backend tests into existing ones.
Also fixed some test failures.
- Don't use bool variable as uniform for shader
- Fix dispathed group number beyond max issue
- Bypass "group > 1" convolution. This should be support in future.
* dnn/Vulkan: Fix multiple initialization in one thread.
2018-10-29 22:51:26 +08:00
|
|
|
bool withCpuOCV = true,
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
bool withVkCom = true,
|
2019-12-02 21:18:07 +08:00
|
|
|
bool withCUDA = true,
|
2019-12-02 21:16:06 +08:00
|
|
|
bool withNgraph = true
|
2019-03-29 21:42:58 +08:00
|
|
|
);
|
2018-08-30 22:53:41 +08:00
|
|
|
|
2019-12-02 21:16:06 +08:00
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE();
|
|
|
|
|
2018-11-15 04:25:23 +08:00
|
|
|
|
|
|
|
class DNNTestLayer : public TestWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
dnn::Backend backend;
|
|
|
|
dnn::Target target;
|
|
|
|
double default_l1, default_lInf;
|
|
|
|
|
|
|
|
DNNTestLayer()
|
|
|
|
{
|
|
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
getDefaultThresholds(backend, target, &default_l1, &default_lInf);
|
|
|
|
}
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
static void getDefaultThresholds(int backend, int target, double* l1, double* lInf)
|
|
|
|
{
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
if (target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
2019-03-29 21:42:58 +08:00
|
|
|
{
|
|
|
|
*l1 = 4e-3;
|
|
|
|
*lInf = 2e-2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*l1 = 1e-5;
|
|
|
|
*lInf = 1e-4;
|
|
|
|
}
|
|
|
|
}
|
2018-11-15 04:25:23 +08:00
|
|
|
|
2018-12-05 23:11:45 +08:00
|
|
|
static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0)
|
|
|
|
{
|
2019-12-02 21:16:06 +08:00
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
&& target == DNN_TARGET_MYRIAD)
|
2019-03-29 21:42:58 +08:00
|
|
|
{
|
|
|
|
if (inp && ref && inp->dims == 4 && ref->dims == 4 &&
|
|
|
|
inp->size[0] != 1 && inp->size[0] != ref->size[0])
|
2019-06-15 20:17:25 +08:00
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
2019-03-29 21:42:58 +08:00
|
|
|
throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin");
|
2019-06-15 20:17:25 +08:00
|
|
|
}
|
2019-03-29 21:42:58 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-15 04:25:23 +08:00
|
|
|
|
2019-12-02 21:16:06 +08:00
|
|
|
void expectNoFallbacks(Net& net, bool raiseError = true)
|
2019-04-19 19:54:08 +08:00
|
|
|
{
|
|
|
|
// Check if all the layers are supported with current backend and target.
|
|
|
|
// Some layers might be fused so their timings equal to zero.
|
|
|
|
std::vector<double> timings;
|
|
|
|
net.getPerfProfile(timings);
|
|
|
|
std::vector<String> names = net.getLayerNames();
|
|
|
|
CV_Assert(names.size() == timings.size());
|
|
|
|
|
2019-12-02 21:16:06 +08:00
|
|
|
bool hasFallbacks = false;
|
2019-04-19 19:54:08 +08:00
|
|
|
for (int i = 0; i < names.size(); ++i)
|
|
|
|
{
|
|
|
|
Ptr<dnn::Layer> l = net.getLayer(net.getLayerId(names[i]));
|
|
|
|
bool fused = !timings[i];
|
|
|
|
if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
|
2019-12-02 21:16:06 +08:00
|
|
|
{
|
|
|
|
hasFallbacks = true;
|
|
|
|
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to has backend implementation" << endl;
|
|
|
|
}
|
2019-04-19 19:54:08 +08:00
|
|
|
}
|
2019-12-02 21:16:06 +08:00
|
|
|
if (hasFallbacks && raiseError)
|
|
|
|
CV_Error(Error::StsNotImplemented, "Implementation fallbacks are not expected in this test");
|
2019-04-19 19:54:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void expectNoFallbacksFromIE(Net& net)
|
|
|
|
{
|
2019-12-02 21:16:06 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
2019-04-19 19:54:08 +08:00
|
|
|
expectNoFallbacks(net);
|
2019-12-02 21:16:06 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
expectNoFallbacks(net, false);
|
2019-04-19 19:54:08 +08:00
|
|
|
}
|
|
|
|
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
void expectNoFallbacksFromCUDA(Net& net)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
expectNoFallbacks(net);
|
|
|
|
}
|
|
|
|
|
2018-11-15 04:25:23 +08:00
|
|
|
protected:
|
|
|
|
void checkBackend(Mat* inp = 0, Mat* ref = 0)
|
|
|
|
{
|
|
|
|
checkBackend(backend, target, inp, ref);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2019-03-29 21:42:58 +08:00
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
#endif
|