2011-09-05 15:57:18 +08:00
|
|
|
/*********************************************************************
|
|
|
|
* Software License Agreement (BSD License)
|
|
|
|
*
|
|
|
|
* Copyright (c) 2008-2011, William Lucas
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials provided
|
|
|
|
* with the distribution.
|
|
|
|
* * Neither the name of the Willow Garage nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*********************************************************************/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
static void divComplex(InputArray _src1, InputArray _src2, OutputArray _dst)
|
|
|
|
{
|
|
|
|
Mat src1 = _src1.getMat();
|
|
|
|
Mat src2 = _src2.getMat();
|
|
|
|
|
|
|
|
CV_Assert( src1.type() == src2.type() && src1.size() == src2.size());
|
|
|
|
CV_Assert( src1.type() == CV_32FC2 || src1.type() == CV_64FC2 );
|
|
|
|
|
|
|
|
_dst.create(src1.size(), src1.type());
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
|
|
|
|
int length = src1.rows*src1.cols;
|
|
|
|
|
|
|
|
if(src1.depth() == CV_32F)
|
|
|
|
{
|
|
|
|
const float* dataA = (const float*)src1.data;
|
|
|
|
const float* dataB = (const float*)src2.data;
|
|
|
|
float* dataC = (float*)dst.data;
|
|
|
|
float eps = FLT_EPSILON; // prevent div0 problems
|
|
|
|
|
|
|
|
for(int j = 0; j < length - 1; j += 2)
|
|
|
|
{
|
|
|
|
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps);
|
|
|
|
double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]);
|
|
|
|
double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]);
|
|
|
|
dataC[j] = (float)(re / denom);
|
|
|
|
dataC[j+1] = (float)(im / denom);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const double* dataA = (const double*)src1.data;
|
|
|
|
const double* dataB = (const double*)src2.data;
|
|
|
|
double* dataC = (double*)dst.data;
|
|
|
|
double eps = DBL_EPSILON; // prevent div0 problems
|
|
|
|
|
|
|
|
for(int j = 0; j < length - 1; j += 2)
|
|
|
|
{
|
|
|
|
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps;
|
|
|
|
double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1];
|
|
|
|
double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1];
|
|
|
|
dataC[j] = re / denom;
|
|
|
|
dataC[j+1] = im / denom;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void absComplex(InputArray _src, OutputArray _dst)
|
|
|
|
{
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_32FC2 || src.type() == CV_64FC2 );
|
|
|
|
|
|
|
|
vector<Mat> planes;
|
|
|
|
split(src, planes);
|
|
|
|
|
|
|
|
magnitude(planes[0], planes[1], planes[0]);
|
|
|
|
planes[1] = Mat::zeros(planes[0].size(), planes[0].type());
|
|
|
|
|
|
|
|
merge(planes, _dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fftShift(InputOutputArray _out)
|
|
|
|
{
|
|
|
|
Mat out = _out.getMat();
|
|
|
|
|
|
|
|
vector<Mat> planes;
|
|
|
|
split(out, planes);
|
|
|
|
|
|
|
|
int xMid = out.cols >> 1;
|
|
|
|
int yMid = out.rows >> 1;
|
|
|
|
|
|
|
|
for(size_t i = 0; i < planes.size(); i++)
|
|
|
|
{
|
|
|
|
// perform quadrant swaps...
|
|
|
|
Mat tmp;
|
|
|
|
Mat q0(planes[i], Rect(0, 0, xMid, yMid));
|
|
|
|
Mat q1(planes[i], Rect(xMid, 0, xMid, yMid));
|
|
|
|
Mat q2(planes[i], Rect(0, yMid, xMid, yMid));
|
|
|
|
Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid));
|
|
|
|
|
|
|
|
q0.copyTo(tmp);
|
|
|
|
q3.copyTo(q0);
|
|
|
|
tmp.copyTo(q3);
|
|
|
|
|
|
|
|
q1.copyTo(tmp);
|
|
|
|
q2.copyTo(q1);
|
|
|
|
tmp.copyTo(q2);
|
|
|
|
}
|
|
|
|
|
|
|
|
merge(planes, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d weightedCentroid(InputArray _src, cv::Point peakLocation, cv::Size weightBoxSize)
|
|
|
|
{
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
|
|
|
|
int type = src.type();
|
|
|
|
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
|
|
|
|
|
|
|
|
int minr = peakLocation.y - (weightBoxSize.height >> 1);
|
|
|
|
int maxr = peakLocation.y + (weightBoxSize.height >> 1);
|
|
|
|
int minc = peakLocation.x - (weightBoxSize.width >> 1);
|
|
|
|
int maxc = peakLocation.x + (weightBoxSize.width >> 1);
|
|
|
|
|
|
|
|
Point2d centroid;
|
|
|
|
double sumIntensity = 0.0;
|
|
|
|
|
|
|
|
// clamp the values to min and max if needed.
|
|
|
|
if(minr < 0)
|
|
|
|
{
|
|
|
|
minr = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(minc < 0)
|
|
|
|
{
|
|
|
|
minc = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(maxr > src.rows - 1)
|
|
|
|
{
|
|
|
|
maxr = src.rows - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(maxc > src.cols - 1)
|
|
|
|
{
|
|
|
|
maxc = src.cols - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(type == CV_32FC1)
|
|
|
|
{
|
|
|
|
const float* dataIn = (const float*)src.data;
|
|
|
|
dataIn += minr*src.cols;
|
|
|
|
for(int y = minr; y <= maxr; y++)
|
|
|
|
{
|
|
|
|
for(int x = minc; x <= maxc; x++)
|
|
|
|
{
|
|
|
|
centroid.x += (double)x*dataIn[x];
|
|
|
|
centroid.y += (double)y*dataIn[x];
|
|
|
|
sumIntensity += (double)dataIn[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
dataIn += src.cols;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const double* dataIn = (const double*)src.data;
|
|
|
|
dataIn += minr*src.cols;
|
|
|
|
for(int y = minr; y <= maxr; y++)
|
|
|
|
{
|
|
|
|
for(int x = minc; x <= maxc; x++)
|
|
|
|
{
|
|
|
|
centroid.x += (double)x*dataIn[x];
|
|
|
|
centroid.y += (double)y*dataIn[x];
|
|
|
|
sumIntensity += dataIn[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
dataIn += src.cols;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sumIntensity += DBL_EPSILON; // prevent div0 problems...
|
|
|
|
|
|
|
|
centroid.x /= sumIntensity;
|
|
|
|
centroid.y /= sumIntensity;
|
|
|
|
|
|
|
|
return centroid;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _window)
|
|
|
|
{
|
|
|
|
Mat src1 = _src1.getMat();
|
|
|
|
Mat src2 = _src2.getMat();
|
|
|
|
Mat window = _window.getMat();
|
|
|
|
|
|
|
|
CV_Assert( src1.type() == src2.type());
|
|
|
|
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
|
|
|
|
CV_Assert( src1.size == src2.size);
|
|
|
|
|
|
|
|
if(!window.empty())
|
|
|
|
{
|
|
|
|
CV_Assert( src1.type() == window.type());
|
|
|
|
CV_Assert( src1.size == window.size);
|
|
|
|
}
|
|
|
|
|
|
|
|
int M = getOptimalDFTSize(src1.rows);
|
|
|
|
int N = getOptimalDFTSize(src1.cols);
|
|
|
|
|
|
|
|
Mat padded1, padded2, paddedWin;
|
|
|
|
|
|
|
|
if(M != src1.rows || N != src1.cols)
|
|
|
|
{
|
|
|
|
copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
|
|
|
|
copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
|
|
|
|
|
|
|
|
if(!window.empty())
|
|
|
|
{
|
|
|
|
copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
padded1 = src1;
|
|
|
|
padded2 = src2;
|
|
|
|
paddedWin = window;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat FFT1, FFT2, P, Pm, C;
|
|
|
|
|
|
|
|
// perform window multiplication if available
|
|
|
|
if(!paddedWin.empty())
|
|
|
|
{
|
|
|
|
// apply window to both images before proceeding...
|
|
|
|
multiply(paddedWin, padded1, padded1);
|
|
|
|
multiply(paddedWin, padded2, padded2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO should be able to improve speed by switching to CCS packed matrices
|
|
|
|
vector<Mat> cplx1, cplx2;
|
|
|
|
cplx1.push_back(padded1);
|
|
|
|
cplx1.push_back(Mat::zeros(padded1.size(), padded1.type()));
|
|
|
|
merge(cplx1, FFT1);
|
|
|
|
|
|
|
|
cplx2.push_back(padded2);
|
|
|
|
cplx2.push_back(Mat::zeros(padded2.size(), padded2.type()));
|
|
|
|
merge(cplx2, FFT2);
|
|
|
|
|
|
|
|
// execute phase correlation equation
|
|
|
|
// Reference: http://en.wikipedia.org/wiki/Phase_correlation
|
|
|
|
dft(FFT1, FFT1);
|
|
|
|
dft(FFT2, FFT2);
|
|
|
|
|
|
|
|
mulSpectrums(FFT1, FFT2, P, 0, true);
|
|
|
|
|
|
|
|
// TODO these two functions need to be changed to work with CCS packed matrices...
|
|
|
|
absComplex(P, Pm);
|
|
|
|
divComplex(P, Pm, C); // FF* / |FF*| (phase correlation equation completed here...)
|
|
|
|
|
|
|
|
idft(C, C); // gives us the nice peak shift location...
|
|
|
|
|
|
|
|
vector<Mat> Cplanes;
|
|
|
|
split(C, Cplanes);
|
|
|
|
C = Cplanes[0]; // use only the real plane since that's all that's left...
|
|
|
|
|
|
|
|
fftShift(C); // shift the energy to the center of the frame.
|
|
|
|
|
|
|
|
// locate the highest peak
|
|
|
|
Point peakLoc;
|
|
|
|
minMaxLoc(C, NULL, NULL, NULL, &peakLoc);
|
|
|
|
|
|
|
|
// get the phase shift with sub-pixel accuracy, 5x5 window seems about right here...
|
|
|
|
Point2d t;
|
|
|
|
t = weightedCentroid(C, peakLoc, Size(5, 5));
|
|
|
|
|
|
|
|
// adjust shift relative to image center...
|
|
|
|
Point2d center((double)src1.cols / 2.0, (double)src1.rows / 2.0);
|
|
|
|
|
|
|
|
return (center - t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type)
|
|
|
|
{
|
|
|
|
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
|
|
|
|
|
|
|
|
_dst.create(winSize, type);
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
|
|
|
|
int rows = dst.rows;
|
|
|
|
int cols = dst.cols;
|
|
|
|
|
|
|
|
if(dst.depth() == CV_32F)
|
|
|
|
{
|
|
|
|
float* dstData = (float*)dst.data;
|
|
|
|
|
|
|
|
for(int i = 0; i < rows; i++)
|
|
|
|
{
|
2011-09-05 17:25:10 +08:00
|
|
|
double wr = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)i / (double)(rows - 1)));
|
2011-09-05 15:57:18 +08:00
|
|
|
for(int j = 0; j < cols; j++)
|
|
|
|
{
|
2011-09-05 17:25:10 +08:00
|
|
|
double wc = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)j / (double)(cols - 1)));
|
2011-09-05 22:37:27 +08:00
|
|
|
dstData[i*cols + j] = (float)(wr * wc);
|
2011-09-05 15:57:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// perform batch sqrt for SSE performance gains
|
|
|
|
cv::sqrt(dst, dst);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double* dstData = (double*)dst.data;
|
|
|
|
|
|
|
|
for(int i = 0; i < rows; i++)
|
|
|
|
{
|
2011-09-05 17:25:10 +08:00
|
|
|
double wr = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)i / (double)(rows - 1)));
|
2011-09-05 15:57:18 +08:00
|
|
|
for(int j = 0; j < cols; j++)
|
|
|
|
{
|
2011-09-05 17:25:10 +08:00
|
|
|
double wc = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)j / (double)(cols - 1)));
|
2011-09-05 15:57:18 +08:00
|
|
|
dstData[i*cols + j] = wr * wc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// perform batch sqrt for SSE performance gains
|
|
|
|
cv::sqrt(dst, dst);
|
|
|
|
}
|
|
|
|
}
|