mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
124 lines
4.5 KiB
C++
124 lines
4.5 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Jin Ma, jin@multicorewareinc.com
|
||
|
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||
|
// Erping Pang, pang_er_ping@163.com
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other oclMaterials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#ifdef HAVE_OPENCL
|
||
|
using namespace cv;
|
||
|
using namespace cv::ocl;
|
||
|
using namespace cvtest;
|
||
|
using namespace testing;
|
||
|
///////K-NEAREST NEIGHBOR//////////////////////////
|
||
|
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol,
|
||
|
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
|
||
|
{
|
||
|
cv::RNG &rng = TS::ptr()->get_rng();
|
||
|
cv::Size size(trainDataCol, trainDataRow);
|
||
|
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false);
|
||
|
if(nClasses != 0)
|
||
|
{
|
||
|
cv::Size size1(trainDataRow, 1);
|
||
|
trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false);
|
||
|
trainLabel.convertTo(trainLabel, CV_32FC1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PARAM_TEST_CASE(KNN, int, Size, int, bool)
|
||
|
{
|
||
|
int k;
|
||
|
int trainDataCol;
|
||
|
int testDataRow;
|
||
|
int nClass;
|
||
|
bool regression;
|
||
|
virtual void SetUp()
|
||
|
{
|
||
|
k = GET_PARAM(0);
|
||
|
nClass = GET_PARAM(2);
|
||
|
trainDataCol = GET_PARAM(1).width;
|
||
|
testDataRow = GET_PARAM(1).height;
|
||
|
regression = GET_PARAM(3);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_P(KNN, Accuracy)
|
||
|
{
|
||
|
Mat trainData, trainLabels;
|
||
|
const int trainDataRow = 500;
|
||
|
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass);
|
||
|
|
||
|
Mat testData, testLabels;
|
||
|
genTrainData(testData, testDataRow, trainDataCol);
|
||
|
|
||
|
KNearestNeighbour knn_ocl;
|
||
|
CvKNearest knn_cpu;
|
||
|
Mat best_label_cpu;
|
||
|
oclMat best_label_ocl;
|
||
|
|
||
|
/*ocl k-Nearest_Neighbor start*/
|
||
|
oclMat trainData_ocl;
|
||
|
trainData_ocl.upload(trainData);
|
||
|
Mat simpleIdx;
|
||
|
knn_ocl.train(trainData, trainLabels, simpleIdx, regression);
|
||
|
|
||
|
oclMat testdata;
|
||
|
testdata.upload(testData);
|
||
|
knn_ocl.find_nearest(testdata, k, best_label_ocl);
|
||
|
/*ocl k-Nearest_Neighbor end*/
|
||
|
|
||
|
/*cpu k-Nearest_Neighbor start*/
|
||
|
knn_cpu.train(trainData, trainLabels, simpleIdx, regression);
|
||
|
knn_cpu.find_nearest(testData, k, &best_label_cpu);
|
||
|
/*cpu k-Nearest_Neighbor end*/
|
||
|
if(regression)
|
||
|
{
|
||
|
EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
|
||
|
}
|
||
|
}
|
||
|
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
|
||
|
Values(4, 3), Values(false, true)));
|
||
|
#endif // HAVE_OPENCL
|