mirror of
https://github.com/opencv/opencv.git
synced 2024-12-23 07:58:00 +08:00
125 lines
4.3 KiB
C++
125 lines
4.3 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
class CV_KalmanTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_KalmanTest();
|
||
|
protected:
|
||
|
void run(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
CV_KalmanTest::CV_KalmanTest()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void CV_KalmanTest::run( int )
|
||
|
{
|
||
|
int code = cvtest::TS::OK;
|
||
|
const int Dim = 7;
|
||
|
const int Steps = 100;
|
||
|
const double max_init = 1;
|
||
|
const double max_noise = 0.1;
|
||
|
|
||
|
const double EPSILON = 1.000;
|
||
|
RNG& rng = ts->get_rng();
|
||
|
CvKalman* Kalm;
|
||
|
int i, j;
|
||
|
|
||
|
CvMat* Sample = cvCreateMat(Dim,1,CV_32F);
|
||
|
CvMat* Temp = cvCreateMat(Dim,1,CV_32F);
|
||
|
|
||
|
Kalm = cvCreateKalman(Dim, Dim);
|
||
|
CvMat Dyn = cvMat(Dim,Dim,CV_32F,Kalm->DynamMatr);
|
||
|
CvMat Mes = cvMat(Dim,Dim,CV_32F,Kalm->MeasurementMatr);
|
||
|
CvMat PNC = cvMat(Dim,Dim,CV_32F,Kalm->PNCovariance);
|
||
|
CvMat MNC = cvMat(Dim,Dim,CV_32F,Kalm->MNCovariance);
|
||
|
CvMat PriErr = cvMat(Dim,Dim,CV_32F,Kalm->PriorErrorCovariance);
|
||
|
CvMat PostErr = cvMat(Dim,Dim,CV_32F,Kalm->PosterErrorCovariance);
|
||
|
CvMat PriState = cvMat(Dim,1,CV_32F,Kalm->PriorState);
|
||
|
CvMat PostState = cvMat(Dim,1,CV_32F,Kalm->PosterState);
|
||
|
cvSetIdentity(&PNC);
|
||
|
cvSetIdentity(&PriErr);
|
||
|
cvSetIdentity(&PostErr);
|
||
|
cvSetZero(&MNC);
|
||
|
cvSetZero(&PriState);
|
||
|
cvSetZero(&PostState);
|
||
|
cvSetIdentity(&Mes);
|
||
|
cvSetIdentity(&Dyn);
|
||
|
Mat _Sample = cvarrToMat(Sample);
|
||
|
cvtest::randUni(rng, _Sample, cvScalarAll(-max_init), cvScalarAll(max_init));
|
||
|
cvKalmanCorrect(Kalm, Sample);
|
||
|
for(i = 0; i<Steps; i++)
|
||
|
{
|
||
|
cvKalmanPredict(Kalm);
|
||
|
for(j = 0; j<Dim; j++)
|
||
|
{
|
||
|
float t = 0;
|
||
|
for(int k=0; k<Dim; k++)
|
||
|
{
|
||
|
t += Dyn.data.fl[j*Dim+k]*Sample->data.fl[k];
|
||
|
}
|
||
|
Temp->data.fl[j]= (float)(t+(cvtest::randReal(rng)*2-1)*max_noise);
|
||
|
}
|
||
|
cvCopy( Temp, Sample );
|
||
|
cvKalmanCorrect(Kalm,Temp);
|
||
|
}
|
||
|
|
||
|
Mat _state_post = cvarrToMat(Kalm->state_post);
|
||
|
code = cvtest::cmpEps2( ts, _Sample, _state_post, EPSILON, false, "The final estimated state" );
|
||
|
|
||
|
cvReleaseMat(&Sample);
|
||
|
cvReleaseMat(&Temp);
|
||
|
cvReleaseKalman(&Kalm);
|
||
|
|
||
|
if( code < 0 )
|
||
|
ts->set_failed_test_info( code );
|
||
|
}
|
||
|
|
||
|
TEST(Video_Kalman, accuracy) { CV_KalmanTest test; test.safe_run(); }
|
||
|
|
||
|
/* End of file. */
|