mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 09:49:13 +08:00
50 lines
1.6 KiB
Python
50 lines
1.6 KiB
Python
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
import argparse
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='This sample demonstrates the meanshift algorithm. \
|
||
|
The example file can be downloaded from: \
|
||
|
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4')
|
||
|
parser.add_argument('image', type=str, help='path to image file')
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
cap = cv.VideoCapture(args.image)
|
||
|
|
||
|
# take first frame of the video
|
||
|
ret,frame = cap.read()
|
||
|
|
||
|
# setup initial location of window
|
||
|
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
|
||
|
track_window = (x, y, w, h)
|
||
|
|
||
|
# set up the ROI for tracking
|
||
|
roi = frame[y:y+h, x:x+w]
|
||
|
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||
|
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||
|
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||
|
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||
|
|
||
|
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||
|
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||
|
|
||
|
while(1):
|
||
|
ret, frame = cap.read()
|
||
|
|
||
|
if ret == True:
|
||
|
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||
|
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||
|
|
||
|
# apply meanshift to get the new location
|
||
|
ret, track_window = cv.meanShift(dst, track_window, term_crit)
|
||
|
|
||
|
# Draw it on image
|
||
|
x,y,w,h = track_window
|
||
|
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
|
||
|
cv.imshow('img2',img2)
|
||
|
|
||
|
k = cv.waitKey(30) & 0xff
|
||
|
if k == 27:
|
||
|
break
|
||
|
else:
|
||
|
break
|