mirror of
https://github.com/opencv/opencv.git
synced 2024-12-19 12:07:59 +08:00
315 lines
8.7 KiB
ReStructuredText
315 lines
8.7 KiB
ReStructuredText
|
.. _remap:
|
||
|
|
||
|
Remapping
|
||
|
*********
|
||
|
|
||
|
Goal
|
||
|
====
|
||
|
|
||
|
In this tutorial you will learn how to:
|
||
|
|
||
|
a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines.
|
||
|
|
||
|
Theory
|
||
|
======
|
||
|
|
||
|
What is remapping?
|
||
|
------------------
|
||
|
|
||
|
* It is the process of taking pixels from one place in the image and locating them in another position in a new image.
|
||
|
|
||
|
* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.
|
||
|
|
||
|
* We can express the remap for every pixel location :math:`(x,y)` as:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
g(x,y) = f ( h(x,y) )
|
||
|
|
||
|
where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`.
|
||
|
|
||
|
* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
h(x,y) = (I.cols - x, y )
|
||
|
|
||
|
What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Theory_0.jpg
|
||
|
:alt: Original test image
|
||
|
:width: 120pt
|
||
|
:align: center
|
||
|
|
||
|
observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction):
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Theory_1.jpg
|
||
|
:alt: Original test image
|
||
|
:width: 120pt
|
||
|
:align: center
|
||
|
|
||
|
* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation.
|
||
|
|
||
|
Code
|
||
|
====
|
||
|
|
||
|
#. **What does this program do?**
|
||
|
|
||
|
* Loads an image
|
||
|
* Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
|
||
|
* Wait for the user to exit the program
|
||
|
|
||
|
#. The tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
#include "opencv2/highgui/highgui.hpp"
|
||
|
#include "opencv2/imgproc/imgproc.hpp"
|
||
|
#include <iostream>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
/// Global variables
|
||
|
Mat src, dst;
|
||
|
Mat map_x, map_y;
|
||
|
char* remap_window = "Remap demo";
|
||
|
int ind = 0;
|
||
|
|
||
|
/// Function Headers
|
||
|
void update_map( void );
|
||
|
|
||
|
/**
|
||
|
* @function main
|
||
|
*/
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
/// Load the image
|
||
|
src = imread( argv[1], 1 );
|
||
|
|
||
|
/// Create dst, map_x and map_y with the same size as src:
|
||
|
dst.create( src.size(), src.type() );
|
||
|
map_x.create( src.size(), CV_32FC1 );
|
||
|
map_y.create( src.size(), CV_32FC1 );
|
||
|
|
||
|
/// Create window
|
||
|
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
|
||
|
|
||
|
/// Loop
|
||
|
while( true )
|
||
|
{
|
||
|
/// Each 1 sec. Press ESC to exit the program
|
||
|
int c = waitKey( 1000 );
|
||
|
|
||
|
if( (char)c == 27 )
|
||
|
{ break; }
|
||
|
|
||
|
/// Update map_x & map_y. Then apply remap
|
||
|
update_map();
|
||
|
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||
|
|
||
|
/// Display results
|
||
|
imshow( remap_window, dst );
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @function update_map
|
||
|
* @brief Fill the map_x and map_y matrices with 4 types of mappings
|
||
|
*/
|
||
|
void update_map( void )
|
||
|
{
|
||
|
ind = ind%4;
|
||
|
|
||
|
for( int j = 0; j < src.rows; j++ )
|
||
|
{ for( int i = 0; i < src.cols; i++ )
|
||
|
{
|
||
|
switch( ind )
|
||
|
{
|
||
|
case 0:
|
||
|
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||
|
{
|
||
|
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||
|
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||
|
}
|
||
|
else
|
||
|
{ map_x.at<float>(j,i) = 0 ;
|
||
|
map_y.at<float>(j,i) = 0 ;
|
||
|
}
|
||
|
break;
|
||
|
case 1:
|
||
|
map_x.at<float>(j,i) = i ;
|
||
|
map_y.at<float>(j,i) = src.rows - j ;
|
||
|
break;
|
||
|
case 2:
|
||
|
map_x.at<float>(j,i) = src.cols - i ;
|
||
|
map_y.at<float>(j,i) = j ;
|
||
|
break;
|
||
|
case 3:
|
||
|
map_x.at<float>(j,i) = src.cols - i ;
|
||
|
map_y.at<float>(j,i) = src.rows - j ;
|
||
|
break;
|
||
|
} // end of switch
|
||
|
}
|
||
|
}
|
||
|
ind++;
|
||
|
}
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
#. Create some variables we will use:
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
Mat src, dst;
|
||
|
Mat map_x, map_y;
|
||
|
char* remap_window = "Remap demo";
|
||
|
int ind = 0;
|
||
|
|
||
|
#. Load an image:
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
src = imread( argv[1], 1 );
|
||
|
|
||
|
#. Create the destination image and the two mapping matrices (for x and y )
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
dst.create( src.size(), src.type() );
|
||
|
map_x.create( src.size(), CV_32FC1 );
|
||
|
map_y.create( src.size(), CV_32FC1 );
|
||
|
|
||
|
#. Create a window to display results
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
|
||
|
|
||
|
#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image:
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
while( true )
|
||
|
{
|
||
|
/// Each 1 sec. Press ESC to exit the program
|
||
|
int c = waitKey( 1000 );
|
||
|
|
||
|
if( (char)c == 27 )
|
||
|
{ break; }
|
||
|
|
||
|
/// Update map_x & map_y. Then apply remap
|
||
|
update_map();
|
||
|
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||
|
|
||
|
/// Display results
|
||
|
imshow( remap_window, dst );
|
||
|
}
|
||
|
|
||
|
The function that applies the remapping is :remap:`remap <>`. We give the following arguments:
|
||
|
|
||
|
* **src**: Source image
|
||
|
* **dst**: Destination image of same size as *src*
|
||
|
* **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)`
|
||
|
* **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src*
|
||
|
* **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default.
|
||
|
* **BORDER_CONSTANT**: Default
|
||
|
|
||
|
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
|
||
|
|
||
|
#. **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||
|
|
||
|
a. Reduce the picture to half its size and will display it in the middle:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)
|
||
|
|
||
|
for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}`
|
||
|
|
||
|
b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)`
|
||
|
|
||
|
c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )`
|
||
|
|
||
|
d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )`
|
||
|
|
||
|
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate.
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
for( int j = 0; j < src.rows; j++ )
|
||
|
{ for( int i = 0; i < src.cols; i++ )
|
||
|
{
|
||
|
switch( ind )
|
||
|
{
|
||
|
case 0:
|
||
|
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||
|
{
|
||
|
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||
|
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||
|
}
|
||
|
else
|
||
|
{ map_x.at<float>(j,i) = 0 ;
|
||
|
map_y.at<float>(j,i) = 0 ;
|
||
|
}
|
||
|
break;
|
||
|
case 1:
|
||
|
map_x.at<float>(j,i) = i ;
|
||
|
map_y.at<float>(j,i) = src.rows - j ;
|
||
|
break;
|
||
|
case 2:
|
||
|
map_x.at<float>(j,i) = src.cols - i ;
|
||
|
map_y.at<float>(j,i) = j ;
|
||
|
break;
|
||
|
case 3:
|
||
|
map_x.at<float>(j,i) = src.cols - i ;
|
||
|
map_y.at<float>(j,i) = src.rows - j ;
|
||
|
break;
|
||
|
} // end of switch
|
||
|
}
|
||
|
}
|
||
|
ind++;
|
||
|
}
|
||
|
|
||
|
|
||
|
Result
|
||
|
======
|
||
|
|
||
|
#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Original_Image.jpg
|
||
|
:alt: Original test image
|
||
|
:width: 250pt
|
||
|
:align: center
|
||
|
|
||
|
#. This is the result of reducing it to half the size and centering it:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Result_0.jpg
|
||
|
:alt: Result 0 for remapping
|
||
|
:width: 250pt
|
||
|
:align: center
|
||
|
|
||
|
#. Turning it upside down:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Result_1.jpg
|
||
|
:alt: Result 0 for remapping
|
||
|
:width: 250pt
|
||
|
:align: center
|
||
|
|
||
|
#. Reflecting it in the x direction:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Result_2.jpg
|
||
|
:alt: Result 0 for remapping
|
||
|
:width: 250pt
|
||
|
:align: center
|
||
|
|
||
|
#. Reflecting it in both directions:
|
||
|
|
||
|
.. image:: images/Remap_Tutorial_Result_3.jpg
|
||
|
:alt: Result 0 for remapping
|
||
|
:width: 250pt
|
||
|
:align: center
|
||
|
|