2019-07-31 04:07:37 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
template<typename TString>
|
2019-10-04 21:48:05 +08:00
|
|
|
static std::string _tf(TString filename, bool required = true)
|
2019-07-31 04:07:37 +08:00
|
|
|
{
|
|
|
|
String rootFolder = "dnn/";
|
2019-10-04 21:48:05 +08:00
|
|
|
return findDataFile(rootFolder + filename, required);
|
2019-07-31 04:07:37 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Test_Model : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void testDetectModel(const std::string& weights, const std::string& cfg,
|
|
|
|
const std::string& imgPath, const std::vector<int>& refClassIds,
|
|
|
|
const std::vector<float>& refConfidences,
|
|
|
|
const std::vector<Rect2d>& refBoxes,
|
|
|
|
double scoreDiff, double iouDiff,
|
|
|
|
double confThreshold = 0.24, double nmsThreshold = 0.0,
|
|
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
Mat frame = imread(imgPath);
|
|
|
|
DetectionModel model(weights, cfg);
|
|
|
|
|
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
|
|
|
|
model.setPreferableBackend(backend);
|
|
|
|
model.setPreferableTarget(target);
|
|
|
|
|
|
|
|
std::vector<int> classIds;
|
|
|
|
std::vector<float> confidences;
|
|
|
|
std::vector<Rect> boxes;
|
|
|
|
|
|
|
|
model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold);
|
|
|
|
|
|
|
|
std::vector<Rect2d> boxesDouble(boxes.size());
|
|
|
|
for (int i = 0; i < boxes.size(); i++) {
|
|
|
|
boxesDouble[i] = boxes[i];
|
|
|
|
}
|
|
|
|
normAssertDetections(refClassIds, refConfidences, refBoxes, classIds,
|
|
|
|
confidences, boxesDouble, "",
|
|
|
|
confThreshold, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
void testClassifyModel(const std::string& weights, const std::string& cfg,
|
|
|
|
const std::string& imgPath, std::pair<int, float> ref, float norm,
|
|
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
Mat frame = imread(imgPath);
|
|
|
|
ClassificationModel model(weights, cfg);
|
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
|
|
|
|
std::pair<int, float> prediction = model.classify(frame);
|
|
|
|
EXPECT_EQ(prediction.first, ref.first);
|
|
|
|
ASSERT_NEAR(prediction.second, ref.second, norm);
|
|
|
|
}
|
2019-08-14 04:38:48 +08:00
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
void testKeypointsModel(const std::string& weights, const std::string& cfg,
|
|
|
|
const Mat& frame, const Mat& exp, float norm,
|
|
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
std::vector<Point2f> points;
|
|
|
|
|
|
|
|
KeypointsModel model(weights, cfg);
|
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
|
2019-12-16 22:43:06 +08:00
|
|
|
model.setPreferableBackend(backend);
|
|
|
|
model.setPreferableTarget(target);
|
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
points = model.estimate(frame, 0.5);
|
|
|
|
|
|
|
|
Mat out = Mat(points).reshape(1);
|
|
|
|
normAssert(exp, out, "", norm, norm);
|
|
|
|
}
|
|
|
|
|
2019-08-14 04:38:48 +08:00
|
|
|
void testSegmentationModel(const std::string& weights_file, const std::string& config_file,
|
|
|
|
const std::string& inImgPath, const std::string& outImgPath,
|
|
|
|
float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
Mat frame = imread(inImgPath);
|
|
|
|
Mat mask;
|
|
|
|
Mat exp = imread(outImgPath, 0);
|
|
|
|
|
|
|
|
SegmentationModel model(weights_file, config_file);
|
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
|
|
|
|
model.segment(frame, mask);
|
|
|
|
normAssert(mask, exp, "", norm, norm);
|
|
|
|
}
|
2019-07-31 04:07:37 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_Model, Classify)
|
|
|
|
{
|
|
|
|
std::pair<int, float> ref(652, 0.641789);
|
|
|
|
|
|
|
|
std::string img_path = _tf("grace_hopper_227.png");
|
|
|
|
std::string config_file = _tf("bvlc_alexnet.prototxt");
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string weights_file = _tf("bvlc_alexnet.caffemodel", false);
|
2019-07-31 04:07:37 +08:00
|
|
|
|
|
|
|
Size size{227, 227};
|
|
|
|
float norm = 1e-4;
|
|
|
|
|
|
|
|
testClassifyModel(weights_file, config_file, img_path, ref, norm, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-09-30 03:02:42 +08:00
|
|
|
TEST_P(Test_Model, DetectRegion)
|
2019-07-31 04:07:37 +08:00
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB);
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
std::vector<int> refClassIds = {6, 1, 11};
|
|
|
|
std::vector<float> refConfidences = {0.750469f, 0.780879f, 0.901615f};
|
|
|
|
std::vector<Rect2d> refBoxes = {Rect2d(240, 53, 135, 72),
|
|
|
|
Rect2d(112, 109, 192, 200),
|
|
|
|
Rect2d(58, 141, 117, 249)};
|
|
|
|
|
|
|
|
std::string img_path = _tf("dog416.png");
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string weights_file = _tf("yolo-voc.weights", false);
|
2019-07-31 04:07:37 +08:00
|
|
|
std::string config_file = _tf("yolo-voc.cfg");
|
|
|
|
|
|
|
|
double scale = 1.0 / 255.0;
|
|
|
|
Size size{416, 416};
|
|
|
|
bool swapRB = true;
|
|
|
|
|
|
|
|
double confThreshold = 0.24;
|
|
|
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
|
2019-12-20 21:36:32 +08:00
|
|
|
double scoreDiff = 8e-5, iouDiff = 1e-5;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 1e-2;
|
|
|
|
iouDiff = 1.6e-2;
|
|
|
|
}
|
2019-07-31 04:07:37 +08:00
|
|
|
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
|
|
|
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
|
|
|
|
Scalar(), scale, swapRB);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Model, DetectionOutput)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
|
|
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
std::vector<int> refClassIds = {7, 12};
|
|
|
|
std::vector<float> refConfidences = {0.991359f, 0.94786f};
|
|
|
|
std::vector<Rect2d> refBoxes = {Rect2d(491, 81, 212, 98),
|
|
|
|
Rect2d(132, 223, 207, 344)};
|
|
|
|
|
|
|
|
std::string img_path = _tf("dog416.png");
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string weights_file = _tf("resnet50_rfcn_final.caffemodel", false);
|
2019-07-31 04:07:37 +08:00
|
|
|
std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt");
|
|
|
|
|
|
|
|
Scalar mean = Scalar(102.9801, 115.9465, 122.7717);
|
|
|
|
Size size{800, 600};
|
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
double scoreDiff = default_l1, iouDiff = 1e-5;
|
2019-07-31 04:07:37 +08:00
|
|
|
float confThreshold = 0.8;
|
|
|
|
double nmsThreshold = 0.0;
|
2019-12-20 21:36:32 +08:00
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV)
|
|
|
|
scoreDiff = 4e-3;
|
|
|
|
iouDiff = 1.8e-1;
|
|
|
|
}
|
2019-07-31 04:07:37 +08:00
|
|
|
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_P(Test_Model, DetectionMobilenetSSD)
|
|
|
|
{
|
|
|
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
|
|
|
ref = ref.reshape(1, ref.size[2]);
|
|
|
|
|
|
|
|
std::string img_path = _tf("street.png");
|
|
|
|
Mat frame = imread(img_path);
|
|
|
|
int frameWidth = frame.cols;
|
|
|
|
int frameHeight = frame.rows;
|
|
|
|
|
|
|
|
std::vector<int> refClassIds;
|
|
|
|
std::vector<float> refConfidences;
|
|
|
|
std::vector<Rect2d> refBoxes;
|
|
|
|
for (int i = 0; i < ref.rows; i++)
|
|
|
|
{
|
|
|
|
refClassIds.emplace_back(ref.at<float>(i, 1));
|
|
|
|
refConfidences.emplace_back(ref.at<float>(i, 2));
|
|
|
|
int left = ref.at<float>(i, 3) * frameWidth;
|
|
|
|
int top = ref.at<float>(i, 4) * frameHeight;
|
|
|
|
int right = ref.at<float>(i, 5) * frameWidth;
|
|
|
|
int bottom = ref.at<float>(i, 6) * frameHeight;
|
|
|
|
int width = right - left + 1;
|
|
|
|
int height = bottom - top + 1;
|
|
|
|
refBoxes.emplace_back(left, top, width, height);
|
|
|
|
}
|
|
|
|
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false);
|
2019-07-31 04:07:37 +08:00
|
|
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt");
|
|
|
|
|
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
|
|
|
double scale = 1.0 / 127.5;
|
|
|
|
Size size{300, 300};
|
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 1.7e-2;
|
|
|
|
iouDiff = 6.91e-2;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
scoreDiff = 1.7e-2;
|
|
|
|
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
iouDiff = 6.91e-2;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 4e-4;
|
|
|
|
}
|
2019-07-31 04:07:37 +08:00
|
|
|
float confThreshold = FLT_MIN;
|
|
|
|
double nmsThreshold = 0.0;
|
|
|
|
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
|
|
|
}
|
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
TEST_P(Test_Model, Keypoints_pose)
|
|
|
|
{
|
2019-12-16 22:43:06 +08:00
|
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
Mat inp = imread(_tf("pose.png"));
|
2020-01-28 00:17:11 +08:00
|
|
|
std::string weights = _tf("onnx/models/lightweight_pose_estimation_201912.onnx", false);
|
|
|
|
float kpdata[] = {
|
|
|
|
237.65625f, 78.25f, 237.65625f, 136.9375f,
|
|
|
|
190.125f, 136.9375f, 142.59375f, 195.625f, 79.21875f, 176.0625f, 285.1875f, 117.375f,
|
|
|
|
348.5625f, 195.625f, 396.09375f, 176.0625f, 205.96875f, 313.0f, 205.96875f, 430.375f,
|
|
|
|
205.96875f, 528.1875f, 269.34375f, 293.4375f, 253.5f, 430.375f, 237.65625f, 528.1875f,
|
|
|
|
221.8125f, 58.6875f, 253.5f, 58.6875f, 205.96875f, 78.25f, 253.5f, 58.6875f
|
|
|
|
};
|
|
|
|
Mat exp(18, 2, CV_32FC1, kpdata);
|
2019-12-13 23:00:06 +08:00
|
|
|
|
|
|
|
Size size{256, 256};
|
|
|
|
float norm = 1e-4;
|
|
|
|
double scale = 1.0/255;
|
|
|
|
Scalar mean = Scalar(128, 128, 128);
|
|
|
|
bool swapRB = false;
|
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
// Ref. Range: [58.6875, 508.625]
|
|
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
norm = 20; // l1 = 1.5, lInf = 20
|
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Model, Keypoints_face)
|
|
|
|
{
|
2019-12-16 22:43:06 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
2019-12-13 23:00:06 +08:00
|
|
|
Mat inp = imread(_tf("gray_face.png"), 0);
|
2019-12-20 03:31:59 +08:00
|
|
|
std::string weights = _tf("onnx/models/facial_keypoints.onnx", false);
|
2019-12-13 23:00:06 +08:00
|
|
|
Mat exp = blobFromNPY(_tf("facial_keypoints_exp.npy"));
|
|
|
|
|
|
|
|
Size size{224, 224};
|
2019-12-16 22:43:06 +08:00
|
|
|
float norm = (target == DNN_TARGET_OPENCL_FP16) ? 5e-3 : 1e-4;
|
2019-12-13 23:00:06 +08:00
|
|
|
double scale = 1.0/255;
|
|
|
|
Scalar mean = Scalar();
|
|
|
|
bool swapRB = false;
|
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
// Ref. Range: [-1.1784188, 1.7758257]
|
|
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
norm = 0.004; // l1 = 0.0006, lInf = 0.004
|
2019-12-13 23:00:06 +08:00
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
2019-12-13 23:00:06 +08:00
|
|
|
}
|
|
|
|
|
2019-09-13 16:33:24 +08:00
|
|
|
TEST_P(Test_Model, Detection_normalized)
|
|
|
|
{
|
|
|
|
std::string img_path = _tf("grace_hopper_227.png");
|
|
|
|
std::vector<int> refClassIds = {15};
|
|
|
|
std::vector<float> refConfidences = {0.999222f};
|
|
|
|
std::vector<Rect2d> refBoxes = {Rect2d(0, 4, 227, 222)};
|
|
|
|
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false);
|
2019-09-13 16:33:24 +08:00
|
|
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt");
|
|
|
|
|
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
|
|
|
double scale = 1.0 / 127.5;
|
|
|
|
Size size{300, 300};
|
|
|
|
|
2019-12-20 21:36:32 +08:00
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
2019-09-13 16:33:24 +08:00
|
|
|
float confThreshold = FLT_MIN;
|
|
|
|
double nmsThreshold = 0.0;
|
2019-12-20 21:36:32 +08:00
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 5e-3;
|
|
|
|
iouDiff = 0.09;
|
|
|
|
}
|
2019-09-13 16:33:24 +08:00
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
|
|
|
}
|
|
|
|
|
2019-08-14 04:38:48 +08:00
|
|
|
TEST_P(Test_Model, Segmentation)
|
|
|
|
{
|
|
|
|
std::string inp = _tf("dog416.png");
|
|
|
|
std::string weights_file = _tf("fcn8s-heavy-pascal.prototxt");
|
2019-10-04 21:48:05 +08:00
|
|
|
std::string config_file = _tf("fcn8s-heavy-pascal.caffemodel", false);
|
2019-08-14 04:38:48 +08:00
|
|
|
std::string exp = _tf("segmentation_exp.png");
|
|
|
|
|
|
|
|
Size size{128, 128};
|
|
|
|
float norm = 0;
|
|
|
|
double scale = 1.0;
|
|
|
|
Scalar mean = Scalar();
|
|
|
|
bool swapRB = false;
|
|
|
|
|
|
|
|
testSegmentationModel(weights_file, config_file, inp, exp, norm, size, mean, scale, swapRB);
|
|
|
|
}
|
|
|
|
|
2019-07-31 04:07:37 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
}} // namespace
|