mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 07:09:12 +08:00
128 lines
3.9 KiB
C++
128 lines
3.9 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include "opencv2/objdetect/barcode.hpp"
|
||
|
|
||
|
namespace opencv_test{namespace{
|
||
|
|
||
|
typedef std::vector<std::string> stringvec;
|
||
|
typedef std::map<std::string, std::string> datasetType;
|
||
|
|
||
|
inline stringvec explode(const std::string &s, const char &c)
|
||
|
{
|
||
|
std::string buff;
|
||
|
stringvec v;
|
||
|
|
||
|
for (auto n:s)
|
||
|
{
|
||
|
if (n != c) { buff += n; }
|
||
|
else if (n == c && !buff.empty())
|
||
|
{
|
||
|
v.push_back(buff);
|
||
|
buff = "";
|
||
|
}
|
||
|
}
|
||
|
if (!buff.empty()) { v.push_back(buff); }
|
||
|
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
inline datasetType buildDataSet(std::string result_file_path)
|
||
|
{
|
||
|
std::ifstream result_file;
|
||
|
datasetType dataset;
|
||
|
result_file.open(result_file_path);
|
||
|
std::string line;
|
||
|
if (result_file.is_open())
|
||
|
{
|
||
|
while (std::getline(result_file, line))
|
||
|
{
|
||
|
stringvec result = explode(line, ',');
|
||
|
std::string filename = result[0];
|
||
|
if (dataset.find(filename) == dataset.end())
|
||
|
{
|
||
|
dataset[filename] = result[1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
result_file.close();
|
||
|
return dataset;
|
||
|
}
|
||
|
|
||
|
inline datasetType initValidation(std::string path)
|
||
|
{
|
||
|
const std::string valid_path = findDataFile(path);
|
||
|
return buildDataSet(valid_path);
|
||
|
}
|
||
|
|
||
|
//==============================================================================
|
||
|
|
||
|
TEST(BARCODE_BarcodeDetector_single, regression)
|
||
|
{
|
||
|
const std::string root = "barcode/single/";
|
||
|
datasetType validation = initValidation(root + "result.csv");
|
||
|
auto bardet = barcode::BarcodeDetector();
|
||
|
datasetType::iterator iterator = validation.begin();
|
||
|
while (iterator != validation.end())
|
||
|
{
|
||
|
std::string img_name = iterator->first;
|
||
|
std::string result = iterator->second;
|
||
|
std::string image_path = findDataFile(root + img_name);
|
||
|
Mat img = imread(image_path);
|
||
|
EXPECT_FALSE(img.empty()) << "Can't read image: " << image_path;
|
||
|
std::vector<cv::Point2f> points;
|
||
|
std::vector<std::string> infos;
|
||
|
std::vector<std::string> formats;
|
||
|
bardet.detectAndDecodeWithType(img, infos, formats, points);
|
||
|
EXPECT_FALSE(points.empty()) << "Nothing detected: " << image_path;
|
||
|
bool is_correct = false;
|
||
|
for (const auto &ans : infos)
|
||
|
{
|
||
|
if (ans == result)
|
||
|
{
|
||
|
is_correct = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
EXPECT_TRUE(is_correct) << "No results for " << img_name;
|
||
|
iterator++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(BARCODE_BarcodeDetector_detect_multi, detect_regression)
|
||
|
{
|
||
|
const std::string root = "barcode/multiple/";
|
||
|
datasetType validation = initValidation(root + "result.csv");
|
||
|
auto bardet = barcode::BarcodeDetector();
|
||
|
datasetType::iterator iterator = validation.begin();
|
||
|
while (iterator != validation.end())
|
||
|
{
|
||
|
std::string img = iterator->first;
|
||
|
size_t expect_corners_size = std::stoi(iterator->second);
|
||
|
std::string image_path = findDataFile(root + img);
|
||
|
Mat src = imread(image_path);
|
||
|
EXPECT_FALSE(src.empty()) << "Can't read image: " << image_path;
|
||
|
|
||
|
std::vector<Point> corners;
|
||
|
bardet.detectMulti(src, corners);
|
||
|
EXPECT_EQ(corners.size(), expect_corners_size) << "Can't detect all barcodes: " << img;
|
||
|
iterator++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(BARCODE_BarcodeDetector_basic, not_found_barcode)
|
||
|
{
|
||
|
auto bardet = barcode::BarcodeDetector();
|
||
|
std::vector<Point> corners;
|
||
|
vector<cv::String> decoded_info;
|
||
|
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
|
||
|
EXPECT_FALSE(bardet.detectMulti(zero_image, corners));
|
||
|
corners = std::vector<Point>(4);
|
||
|
EXPECT_ANY_THROW(bardet.decodeMulti(zero_image, corners, decoded_info));
|
||
|
}
|
||
|
|
||
|
}} // opencv_test::<anonymous>::
|