2012-10-17 15:12:04 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
2013-03-21 17:31:51 +08:00
|
|
|
// and/or other materials provided with the distribution.
|
2012-10-17 15:12:04 +08:00
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
2013-03-21 17:31:51 +08:00
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
2012-10-17 15:12:04 +08:00
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
2013-08-28 19:45:13 +08:00
|
|
|
using namespace cv::cuda;
|
2012-10-17 15:12:04 +08:00
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
Ptr<cv::cuda::SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); }
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
Ptr<cv::cuda::DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<DensePyrLKOpticalFlow>(); }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
|
2012-11-12 18:12:27 +08:00
|
|
|
namespace pyrlk
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
void loadConstants(int2 winSize, int iters, cudaStream_t stream);
|
2015-12-29 23:48:14 +08:00
|
|
|
template<typename T, int cn> struct pyrLK_caller
|
|
|
|
{
|
|
|
|
static void sparse(PtrStepSz<typename device::TypeVec<T, cn>::vec_type> I, PtrStepSz<typename device::TypeVec<T, cn>::vec_type> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
|
|
|
|
int level, dim3 block, dim3 patch, cudaStream_t stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
static void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
|
|
|
|
PtrStepSzf err, int2 winSize, cudaStream_t stream);
|
|
|
|
};
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
template<typename T, int cn> void dispatcher(GpuMat I, GpuMat J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
|
|
|
|
int level, dim3 block, dim3 patch, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
pyrLK_caller<T, cn>::sparse(I, J, prevPts, nextPts, status, err, ptcount, level, block, patch, stream);
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
class PyrLKOpticalFlowBase
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow);
|
|
|
|
|
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
|
|
|
GpuMat& status, GpuMat* err, Stream& stream);
|
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
void sparse(std::vector<GpuMat>& prevPyr, std::vector<GpuMat>& nextPyr, const GpuMat& prevPts, GpuMat& nextPts,
|
|
|
|
GpuMat& status, GpuMat* err, Stream& stream);
|
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream);
|
|
|
|
|
|
|
|
protected:
|
|
|
|
Size winSize_;
|
|
|
|
int maxLevel_;
|
|
|
|
int iters_;
|
|
|
|
bool useInitialFlow_;
|
2015-12-29 23:48:14 +08:00
|
|
|
void buildImagePyramid(const GpuMat& prevImg, std::vector<GpuMat>& prevPyr, const GpuMat& nextImg, std::vector<GpuMat>& nextPyr, Stream stream);
|
2014-12-31 20:36:15 +08:00
|
|
|
private:
|
2015-12-29 23:48:14 +08:00
|
|
|
friend class SparsePyrLKOpticalFlowImpl;
|
2014-12-31 20:36:15 +08:00
|
|
|
std::vector<GpuMat> prevPyr_;
|
|
|
|
std::vector<GpuMat> nextPyr_;
|
|
|
|
};
|
|
|
|
|
|
|
|
PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
|
|
|
|
winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void calcPatchSize(Size winSize, dim3& block, dim3& patch)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
|
|
|
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
|
|
|
|
{
|
2012-12-17 21:03:39 +08:00
|
|
|
block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16;
|
2012-10-17 15:12:04 +08:00
|
|
|
block.y = 8;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
block.x = 16;
|
2012-12-17 21:03:39 +08:00
|
|
|
block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8;
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
patch.x = (winSize.width + block.x - 1) / block.x;
|
|
|
|
patch.y = (winSize.height + block.y - 1) / block.y;
|
|
|
|
|
|
|
|
block.z = patch.z = 1;
|
|
|
|
}
|
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
void PyrLKOpticalFlowBase::buildImagePyramid(const GpuMat& prevImg, std::vector<GpuMat>& prevPyr, const GpuMat& nextImg, std::vector<GpuMat>& nextPyr, Stream stream)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2015-12-29 23:48:14 +08:00
|
|
|
prevPyr.resize(maxLevel_ + 1);
|
|
|
|
nextPyr.resize(maxLevel_ + 1);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
int cn = prevImg.channels();
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
CV_Assert(cn == 1 || cn == 3 || cn == 4);
|
|
|
|
|
|
|
|
prevPyr[0] = prevImg;
|
|
|
|
nextPyr[0] = nextImg;
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
for (int level = 1; level <= maxLevel_; ++level)
|
|
|
|
{
|
|
|
|
cuda::pyrDown(prevPyr[level - 1], prevPyr[level], stream);
|
|
|
|
cuda::pyrDown(nextPyr[level - 1], nextPyr[level], stream);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void PyrLKOpticalFlowBase::sparse(std::vector<GpuMat>& prevPyr, std::vector<GpuMat>& nextPyr, const GpuMat& prevPts, GpuMat& nextPts,
|
|
|
|
GpuMat& status, GpuMat* err, Stream& stream)
|
|
|
|
{
|
|
|
|
CV_Assert(prevPyr.size() && nextPyr.size() && "Pyramid needs to at least contain the original matrix as the first element");
|
|
|
|
CV_Assert(prevPyr[0].size() == nextPyr[0].size());
|
|
|
|
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);
|
|
|
|
CV_Assert(maxLevel_ >= 0);
|
|
|
|
CV_Assert(winSize_.width > 2 && winSize_.height > 2);
|
2014-12-31 20:36:15 +08:00
|
|
|
if (useInitialFlow_)
|
2015-12-29 23:48:14 +08:00
|
|
|
CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type());
|
2014-12-31 20:36:15 +08:00
|
|
|
else
|
|
|
|
ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1);
|
|
|
|
GpuMat temp2 = nextPts.reshape(1);
|
|
|
|
cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
|
|
|
|
status.setTo(Scalar::all(1), stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
if (err)
|
|
|
|
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
if (prevPyr.size() != size_t(maxLevel_ + 1) || nextPyr.size() != size_t(maxLevel_ + 1))
|
|
|
|
{
|
|
|
|
buildImagePyramid(prevPyr[0], prevPyr, nextPyr[0], nextPyr, stream);
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
dim3 block, patch;
|
|
|
|
calcPatchSize(winSize_, block, patch);
|
|
|
|
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
|
|
|
|
pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream));
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
const int cn = prevPyr[0].channels();
|
|
|
|
const int type = prevPyr[0].depth();
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
typedef void(*func_t)(GpuMat I, GpuMat J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
|
|
|
|
int level, dim3 block, dim3 patch, cudaStream_t stream);
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
// Current int datatype is disabled due to pyrDown not implementing it
|
|
|
|
// while ushort does work, it has significantly worse performance, and thus doesn't pass accuracy tests.
|
|
|
|
static const func_t funcs[6][4] =
|
2014-12-31 20:36:15 +08:00
|
|
|
{
|
2015-12-29 23:48:14 +08:00
|
|
|
{ pyrlk::dispatcher<uchar, 1> , /*pyrlk::dispatcher<uchar, 2>*/ 0, pyrlk::dispatcher<uchar, 3> , pyrlk::dispatcher<uchar, 4> },
|
|
|
|
{ /*pyrlk::dispatcher<char, 1>*/ 0, /*pyrlk::dispatcher<char, 2>*/ 0, /*pyrlk::dispatcher<char, 3>*/ 0, /*pyrlk::dispatcher<char, 4>*/ 0 },
|
|
|
|
{ pyrlk::dispatcher<ushort, 1> , /*pyrlk::dispatcher<ushort, 2>*/0, pyrlk::dispatcher<ushort, 3> , pyrlk::dispatcher<ushort, 4> },
|
|
|
|
{ /*pyrlk::dispatcher<short, 1>*/ 0, /*pyrlk::dispatcher<short, 2>*/ 0, /*pyrlk::dispatcher<short, 3>*/ 0, /*pyrlk::dispatcher<short, 4>*/0 },
|
|
|
|
{ pyrlk::dispatcher<int, 1> , /*pyrlk::dispatcher<int, 2>*/ 0, pyrlk::dispatcher<int, 3> , pyrlk::dispatcher<int, 4> },
|
|
|
|
{ pyrlk::dispatcher<float, 1> , /*pyrlk::dispatcher<float, 2>*/ 0, pyrlk::dispatcher<float, 3> , pyrlk::dispatcher<float, 4> }
|
|
|
|
};
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
func_t func = funcs[type][cn-1];
|
|
|
|
CV_Assert(func != NULL && "Datatype not implemented");
|
|
|
|
for (int level = maxLevel_; level >= 0; level--)
|
|
|
|
{
|
|
|
|
func(prevPyr[level], nextPyr[level],
|
|
|
|
prevPts.ptr<float2>(), nextPts.ptr<float2>(),
|
|
|
|
status.ptr(), level == 0 && err ? err->ptr<float>() : 0,
|
|
|
|
prevPts.cols, level, block, patch,
|
|
|
|
StreamAccessor::getStream(stream));
|
2014-12-31 20:36:15 +08:00
|
|
|
}
|
2015-12-29 23:48:14 +08:00
|
|
|
}
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream)
|
|
|
|
{
|
|
|
|
if (prevPts.empty())
|
2014-12-31 20:36:15 +08:00
|
|
|
{
|
2015-12-29 23:48:14 +08:00
|
|
|
nextPts.release();
|
|
|
|
status.release();
|
|
|
|
if (err) err->release();
|
|
|
|
return;
|
2014-12-31 20:36:15 +08:00
|
|
|
}
|
2015-12-29 23:48:14 +08:00
|
|
|
CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 );
|
|
|
|
CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
// build the image pyramids.
|
|
|
|
buildImagePyramid(prevImg, prevPyr_, nextImg, nextPyr_, stream);
|
|
|
|
|
|
|
|
sparse(prevPyr_, nextPyr_, prevPts, nextPts, status, err, stream);
|
2014-12-31 20:36:15 +08:00
|
|
|
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
CV_Assert( prevImg.type() == CV_8UC1 );
|
|
|
|
CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
|
|
|
|
CV_Assert( maxLevel_ >= 0 );
|
|
|
|
CV_Assert( winSize_.width > 2 && winSize_.height > 2 );
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
// build the image pyramids.
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
prevPyr_.resize(maxLevel_ + 1);
|
|
|
|
nextPyr_.resize(maxLevel_ + 1);
|
|
|
|
|
|
|
|
prevPyr_[0] = prevImg;
|
|
|
|
nextImg.convertTo(nextPyr_[0], CV_32F, stream);
|
|
|
|
|
|
|
|
for (int level = 1; level <= maxLevel_; ++level)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream);
|
|
|
|
cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
2014-12-31 20:36:15 +08:00
|
|
|
|
|
|
|
BufferPool pool(stream);
|
|
|
|
|
|
|
|
GpuMat uPyr[] = {
|
|
|
|
pool.getBuffer(prevImg.size(), CV_32FC1),
|
|
|
|
pool.getBuffer(prevImg.size(), CV_32FC1),
|
|
|
|
};
|
|
|
|
GpuMat vPyr[] = {
|
|
|
|
pool.getBuffer(prevImg.size(), CV_32FC1),
|
|
|
|
pool.getBuffer(prevImg.size(), CV_32FC1),
|
|
|
|
};
|
|
|
|
|
|
|
|
uPyr[0].setTo(Scalar::all(0), stream);
|
|
|
|
vPyr[0].setTo(Scalar::all(0), stream);
|
|
|
|
uPyr[1].setTo(Scalar::all(0), stream);
|
|
|
|
vPyr[1].setTo(Scalar::all(0), stream);
|
|
|
|
|
|
|
|
int2 winSize2i = make_int2(winSize_.width, winSize_.height);
|
|
|
|
pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream));
|
|
|
|
|
|
|
|
int idx = 0;
|
|
|
|
|
|
|
|
for (int level = maxLevel_; level >= 0; level--)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
int idx2 = (idx + 1) & 1;
|
|
|
|
|
2015-12-29 23:48:14 +08:00
|
|
|
pyrlk::pyrLK_caller<float,1>::dense(prevPyr_[level], nextPyr_[level],
|
2014-12-31 20:36:15 +08:00
|
|
|
uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2],
|
|
|
|
PtrStepSzf(), winSize2i,
|
|
|
|
StreamAccessor::getStream(stream));
|
|
|
|
|
|
|
|
if (level > 0)
|
|
|
|
idx = idx2;
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
2014-12-31 20:36:15 +08:00
|
|
|
|
|
|
|
uPyr[idx].copyTo(u, stream);
|
|
|
|
vPyr[idx].copyTo(v, stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
class SparsePyrLKOpticalFlowImpl : public cv::cuda::SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase
|
2014-12-31 20:36:15 +08:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
|
|
|
|
PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
|
|
|
|
{
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual Size getWinSize() const { return winSize_; }
|
|
|
|
virtual void setWinSize(Size winSize) { winSize_ = winSize; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual int getMaxLevel() const { return maxLevel_; }
|
|
|
|
virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual int getNumIters() const { return iters_; }
|
|
|
|
virtual void setNumIters(int iters) { iters_ = iters; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual bool getUseInitialFlow() const { return useInitialFlow_; }
|
|
|
|
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual void calc(InputArray _prevImg, InputArray _nextImg,
|
|
|
|
InputArray _prevPts, InputOutputArray _nextPts,
|
|
|
|
OutputArray _status,
|
|
|
|
OutputArray _err,
|
|
|
|
Stream& stream)
|
|
|
|
{
|
|
|
|
const GpuMat prevPts = _prevPts.getGpuMat();
|
|
|
|
GpuMat& nextPts = _nextPts.getGpuMatRef();
|
|
|
|
GpuMat& status = _status.getGpuMatRef();
|
|
|
|
GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL;
|
2015-12-29 23:48:14 +08:00
|
|
|
if (_prevImg.kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT && _prevImg.kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT)
|
|
|
|
{
|
|
|
|
std::vector<GpuMat> prevPyr, nextPyr;
|
|
|
|
_prevImg.getGpuMatVector(prevPyr);
|
|
|
|
_nextImg.getGpuMatVector(nextPyr);
|
|
|
|
sparse(prevPyr, nextPyr, prevPts, nextPts, status, err, stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const GpuMat prevImg = _prevImg.getGpuMat();
|
|
|
|
const GpuMat nextImg = _nextImg.getGpuMat();
|
|
|
|
sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream);
|
|
|
|
}
|
2014-12-31 20:36:15 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
public:
|
|
|
|
DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
|
|
|
|
PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
|
|
|
|
{
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual Size getWinSize() const { return winSize_; }
|
|
|
|
virtual void setWinSize(Size winSize) { winSize_ = winSize; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual int getMaxLevel() const { return maxLevel_; }
|
|
|
|
virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual int getNumIters() const { return iters_; }
|
|
|
|
virtual void setNumIters(int iters) { iters_ = iters; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual bool getUseInitialFlow() const { return useInitialFlow_; }
|
|
|
|
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream)
|
|
|
|
{
|
|
|
|
const GpuMat prevImg = _prevImg.getGpuMat();
|
|
|
|
const GpuMat nextImg = _nextImg.getGpuMat();
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
BufferPool pool(stream);
|
|
|
|
GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1);
|
|
|
|
GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
dense(prevImg, nextImg, u, v, stream);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2014-12-31 20:36:15 +08:00
|
|
|
GpuMat flows[] = {u, v};
|
|
|
|
cuda::merge(flows, 2, _flow, stream);
|
|
|
|
}
|
|
|
|
};
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
Ptr<cv::cuda::SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
|
2012-10-17 15:12:04 +08:00
|
|
|
{
|
2014-12-31 20:36:15 +08:00
|
|
|
return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
Ptr<cv::cuda::DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
|
2014-12-31 20:36:15 +08:00
|
|
|
{
|
|
|
|
return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
2016-01-29 01:45:52 +08:00
|
|
|
#endif /* !defined (HAVE_CUDA) */
|