opencv/samples/python2/obj_detect.py

79 lines
1.9 KiB
Python
Raw Normal View History

2011-06-17 15:35:39 +08:00
import numpy as np
import cv2, cv
import common
def detect(img, cascade):
min_size = (20, 20)
haar_scale = 1.1
min_neighbors = 3
haar_flags = 0
rects = cascade.detectMultiScale(img, haar_scale, min_neighbors, haar_flags, min_size)
if len(rects) == 0:
return
rects[:,2:] += rects[:,:2]
return rects
def detect_turned(img, cascade):
img_t = cv2.transpose(img)
img_cw = cv2.flip(img_t, 1)
img_ccw = cv2.flip(img_t, 0)
r = detect(img, cascade)
r_cw = detect(img_cw, cascade)
r_ccw = detect(img_ccw, cascade)
h, w = img.shape[:2]
if r_cw is not None:
r_cw[:,[0, 2]] = h - r_cw[:,[0, 2]] - 1
r_cw = r_cw[:,[1,0,3,2]]
if r_ccw is not None:
r_ccw[:,[1, 3]] = w - r_ccw[:,[1, 3]] - 1
r_ccw = r_ccw[:,[1,0,3,2]]
rects = np.vstack( [a for a in [r, r_cw, r_ccw] if a is not None] )
return rects
def process_image(fn, cascade):
pass
if __name__ == '__main__':
import sys
import getopt
args, img_mask = getopt.getopt(sys.argv[1:], '', ['cascade='])
args = dict(args)
cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")
cascade = cv2.CascadeClassifier(cascade_fn)
img = cv2.imread('test.jpg')
h, w = img.shape[:2]
r = 512.0 / max(h, w)
small = cv2.resize(img, (int(w*r), int(h*r)), interpolation=cv2.INTER_AREA)
rects = detect_turned(small, cascade)
print rects
for x1, y1, x2, y2 in rects:
cv2.rectangle(small, (x1, y1), (x2, y2), (0, 255, 0))
cv2.circle(small, (x1, y1), 2, (0, 0, 255), -1)
cv2.imshow('img', small)
cv2.waitKey()
'''
img = cv2.imread('test.jpg')
h, w = img.shape[:2]
r = 512.0 / max(h, w)
small = cv2.resize(img, (w*r, h*r), interpolation=cv2.INTER_AREA)
cv2.imshow('img', small)
cv2.waitKey()
'''