opencv/apps/traincascade/cascadeclassifier.cpp

568 lines
21 KiB
C++
Raw Normal View History

#include "opencv2/core.hpp"
2012-06-08 01:21:29 +08:00
#include "cascadeclassifier.h"
#include <queue>
using namespace std;
using namespace cv;
static const char* stageTypes[] = { CC_BOOST };
static const char* featureTypes[] = { CC_HAAR, CC_LBP, CC_HOG };
2012-06-08 01:21:29 +08:00
CvCascadeParams::CvCascadeParams() : stageType( defaultStageType ),
featureType( defaultFeatureType ), winSize( cvSize(24, 24) )
2012-06-08 01:21:29 +08:00
{
name = CC_CASCADE_PARAMS;
}
CvCascadeParams::CvCascadeParams( int _stageType, int _featureType ) : stageType( _stageType ),
featureType( _featureType ), winSize( cvSize(24, 24) )
2012-06-08 01:21:29 +08:00
{
name = CC_CASCADE_PARAMS;
}
//---------------------------- CascadeParams --------------------------------------
void CvCascadeParams::write( FileStorage &fs ) const
{
string stageTypeStr = stageType == BOOST ? CC_BOOST : string();
CV_Assert( !stageTypeStr.empty() );
fs << CC_STAGE_TYPE << stageTypeStr;
string featureTypeStr = featureType == CvFeatureParams::HAAR ? CC_HAAR :
2012-06-08 01:21:29 +08:00
featureType == CvFeatureParams::LBP ? CC_LBP :
featureType == CvFeatureParams::HOG ? CC_HOG :
0;
CV_Assert( !stageTypeStr.empty() );
fs << CC_FEATURE_TYPE << featureTypeStr;
fs << CC_HEIGHT << winSize.height;
fs << CC_WIDTH << winSize.width;
}
bool CvCascadeParams::read( const FileNode &node )
{
if ( node.empty() )
return false;
string stageTypeStr, featureTypeStr;
FileNode rnode = node[CC_STAGE_TYPE];
if ( !rnode.isString() )
return false;
rnode >> stageTypeStr;
stageType = !stageTypeStr.compare( CC_BOOST ) ? BOOST : -1;
if (stageType == -1)
return false;
rnode = node[CC_FEATURE_TYPE];
if ( !rnode.isString() )
return false;
rnode >> featureTypeStr;
featureType = !featureTypeStr.compare( CC_HAAR ) ? CvFeatureParams::HAAR :
2012-06-08 01:21:29 +08:00
!featureTypeStr.compare( CC_LBP ) ? CvFeatureParams::LBP :
!featureTypeStr.compare( CC_HOG ) ? CvFeatureParams::HOG :
-1;
if (featureType == -1)
return false;
node[CC_HEIGHT] >> winSize.height;
node[CC_WIDTH] >> winSize.width;
return winSize.height > 0 && winSize.width > 0;
}
void CvCascadeParams::printDefaults() const
{
CvParams::printDefaults();
cout << " [-stageType <";
for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
{
cout << (i ? " | " : "") << stageTypes[i];
if ( i == defaultStageType )
cout << "(default)";
}
cout << ">]" << endl;
cout << " [-featureType <{";
for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
{
cout << (i ? ", " : "") << featureTypes[i];
if ( i == defaultStageType )
cout << "(default)";
}
cout << "}>]" << endl;
cout << " [-w <sampleWidth = " << winSize.width << ">]" << endl;
cout << " [-h <sampleHeight = " << winSize.height << ">]" << endl;
}
void CvCascadeParams::printAttrs() const
{
cout << "stageType: " << stageTypes[stageType] << endl;
cout << "featureType: " << featureTypes[featureType] << endl;
cout << "sampleWidth: " << winSize.width << endl;
cout << "sampleHeight: " << winSize.height << endl;
}
bool CvCascadeParams::scanAttr( const string prmName, const string val )
{
bool res = true;
if( !prmName.compare( "-stageType" ) )
{
for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
if( !val.compare( stageTypes[i] ) )
stageType = i;
}
else if( !prmName.compare( "-featureType" ) )
{
for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
if( !val.compare( featureTypes[i] ) )
featureType = i;
}
else if( !prmName.compare( "-w" ) )
{
winSize.width = atoi( val.c_str() );
}
else if( !prmName.compare( "-h" ) )
{
winSize.height = atoi( val.c_str() );
}
else
res = false;
return res;
}
//---------------------------- CascadeClassifier --------------------------------------
bool CvCascadeClassifier::train( const string _cascadeDirName,
const string _posFilename,
const string _negFilename,
2012-06-08 01:21:29 +08:00
int _numPos, int _numNeg,
int _precalcValBufSize, int _precalcIdxBufSize,
int _numStages,
const CvCascadeParams& _cascadeParams,
const CvFeatureParams& _featureParams,
const CvCascadeBoostParams& _stageParams,
bool baseFormatSave,
double acceptanceRatioBreakValue )
2012-06-08 01:21:29 +08:00
{
// Start recording clock ticks for training time output
const clock_t begin_time = clock();
if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() )
CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" );
string dirName;
2012-03-20 17:02:01 +08:00
if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) )
dirName = _cascadeDirName;
else
2012-03-20 17:02:01 +08:00
dirName = _cascadeDirName + '/';
numPos = _numPos;
numNeg = _numNeg;
numStages = _numStages;
if ( !imgReader.create( _posFilename, _negFilename, _cascadeParams.winSize ) )
{
cout << "Image reader can not be created from -vec " << _posFilename
<< " and -bg " << _negFilename << "." << endl;
return false;
}
if ( !load( dirName ) )
{
cascadeParams = _cascadeParams;
featureParams = CvFeatureParams::create(cascadeParams.featureType);
featureParams->init(_featureParams);
2013-08-13 22:33:06 +08:00
stageParams = makePtr<CvCascadeBoostParams>();
*stageParams = _stageParams;
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
2013-08-13 22:33:06 +08:00
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
stageClassifiers.reserve( numStages );
2015-02-17 17:25:18 +08:00
}else{
// Make sure that if model parameters are preloaded, that people are aware of this,
// even when passing other parameters to the training command
cout << "---------------------------------------------------------------------------------" << endl;
cout << "Training parameters are pre-loaded from the parameter file in data folder!" << endl;
cout << "Please empty this folder if you want to use a NEW set of training parameters." << endl;
cout << "---------------------------------------------------------------------------------" << endl;
}
cout << "PARAMETERS:" << endl;
cout << "cascadeDirName: " << _cascadeDirName << endl;
cout << "vecFileName: " << _posFilename << endl;
cout << "bgFileName: " << _negFilename << endl;
cout << "numPos: " << _numPos << endl;
cout << "numNeg: " << _numNeg << endl;
cout << "numStages: " << numStages << endl;
cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl;
cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl;
cout << "acceptanceRatioBreakValue : " << acceptanceRatioBreakValue << endl;
cascadeParams.printAttrs();
stageParams->printAttrs();
featureParams->printAttrs();
cout << "Number of unique features given windowSize [" << _cascadeParams.winSize.width << "," << _cascadeParams.winSize.height << "] : " << featureEvaluator->getNumFeatures() << "" << endl;
int startNumStages = (int)stageClassifiers.size();
if ( startNumStages > 1 )
cout << endl << "Stages 0-" << startNumStages-1 << " are loaded" << endl;
else if ( startNumStages == 1)
cout << endl << "Stage 0 is loaded" << endl;
2012-06-08 01:21:29 +08:00
double requiredLeafFARate = pow( (double) stageParams->maxFalseAlarm, (double) numStages ) /
(double)stageParams->max_depth;
double tempLeafFARate;
2012-06-08 01:21:29 +08:00
for( int i = startNumStages; i < numStages; i++ )
{
cout << endl << "===== TRAINING " << i << "-stage =====" << endl;
cout << "<BEGIN" << endl;
if ( !updateTrainingSet( requiredLeafFARate, tempLeafFARate ) )
{
cout << "Train dataset for temp stage can not be filled. "
"Branch training terminated." << endl;
break;
}
if( tempLeafFARate <= requiredLeafFARate )
{
cout << "Required leaf false alarm rate achieved. "
"Branch training terminated." << endl;
break;
}
if( (tempLeafFARate <= acceptanceRatioBreakValue) && (acceptanceRatioBreakValue >= 0) ){
cout << "The required acceptanceRatio for the model has been reached to avoid overfitting of trainingdata. "
"Branch training terminated." << endl;
break;
}
2013-08-13 22:33:06 +08:00
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
bool isStageTrained = tempStage->train( featureEvaluator,
2012-07-12 20:32:54 +08:00
curNumSamples, _precalcValBufSize, _precalcIdxBufSize,
2013-08-13 22:33:06 +08:00
*stageParams );
cout << "END>" << endl;
2012-06-08 01:21:29 +08:00
2012-07-12 20:32:54 +08:00
if(!isStageTrained)
break;
stageClassifiers.push_back( tempStage );
// save params
2012-07-12 20:32:54 +08:00
if( i == 0)
{
2012-07-12 20:32:54 +08:00
std::string paramsFilename = dirName + CC_PARAMS_FILENAME;
FileStorage fs( paramsFilename, FileStorage::WRITE);
if ( !fs.isOpened() )
{
2012-07-12 20:32:54 +08:00
cout << "Parameters can not be written, because file " << paramsFilename
<< " can not be opened." << endl;
return false;
}
2012-07-12 20:32:54 +08:00
fs << FileStorage::getDefaultObjectName(paramsFilename) << "{";
writeParams( fs );
fs << "}";
}
// save current stage
char buf[10];
sprintf(buf, "%s%d", "stage", i );
2012-07-12 20:32:54 +08:00
string stageFilename = dirName + buf + ".xml";
FileStorage fs( stageFilename, FileStorage::WRITE );
if ( !fs.isOpened() )
{
2012-07-12 20:32:54 +08:00
cout << "Current stage can not be written, because file " << stageFilename
<< " can not be opened." << endl;
return false;
}
2012-07-12 20:32:54 +08:00
fs << FileStorage::getDefaultObjectName(stageFilename) << "{";
tempStage->write( fs, Mat() );
fs << "}";
// Output training time up till now
float seconds = float( clock () - begin_time ) / CLOCKS_PER_SEC;
int days = int(seconds) / 60 / 60 / 24;
int hours = (int(seconds) / 60 / 60) % 24;
int minutes = (int(seconds) / 60) % 60;
int seconds_left = int(seconds) % 60;
cout << "Training until now has taken " << days << " days " << hours << " hours " << minutes << " minutes " << seconds_left <<" seconds." << endl;
}
2012-07-12 20:32:54 +08:00
if(stageClassifiers.size() == 0)
{
cout << "Cascade classifier can't be trained. Check the used training parameters." << endl;
return false;
}
save( dirName + CC_CASCADE_FILENAME, baseFormatSave );
2012-07-12 20:32:54 +08:00
return true;
}
int CvCascadeClassifier::predict( int sampleIdx )
{
CV_DbgAssert( sampleIdx < numPos + numNeg );
for (vector< Ptr<CvCascadeBoost> >::iterator it = stageClassifiers.begin();
it != stageClassifiers.end();++it )
{
if ( (*it)->predict( sampleIdx ) == 0.f )
return 0;
}
return 1;
}
bool CvCascadeClassifier::updateTrainingSet( double minimumAcceptanceRatio, double& acceptanceRatio)
{
int64 posConsumed = 0, negConsumed = 0;
imgReader.restart();
int posCount = fillPassedSamples( 0, numPos, true, 0, posConsumed );
if( !posCount )
return false;
cout << "POS count : consumed " << posCount << " : " << (int)posConsumed << endl;
int proNumNeg = cvRound( ( ((double)numNeg) * ((double)posCount) ) / numPos ); // apply only a fraction of negative samples. double is required since overflow is possible
int negCount = fillPassedSamples( posCount, proNumNeg, false, minimumAcceptanceRatio, negConsumed );
if ( !negCount )
if ( !(negConsumed > 0 && ((double)negCount+1)/(double)negConsumed <= minimumAcceptanceRatio) )
return false;
2011-05-04 19:12:17 +08:00
curNumSamples = posCount + negCount;
acceptanceRatio = negConsumed == 0 ? 0 : ( (double)negCount/(double)(int64)negConsumed );
cout << "NEG count : acceptanceRatio " << negCount << " : " << acceptanceRatio << endl;
return true;
}
int CvCascadeClassifier::fillPassedSamples( int first, int count, bool isPositive, double minimumAcceptanceRatio, int64& consumed )
{
int getcount = 0;
Mat img(cascadeParams.winSize, CV_8UC1);
for( int i = first; i < first + count; i++ )
{
for( ; ; )
{
if( consumed != 0 && ((double)getcount+1)/(double)(int64)consumed <= minimumAcceptanceRatio )
return getcount;
bool isGetImg = isPositive ? imgReader.getPos( img ) :
imgReader.getNeg( img );
2012-06-08 01:21:29 +08:00
if( !isGetImg )
return getcount;
consumed++;
featureEvaluator->setImage( img, isPositive ? 1 : 0, i );
if( predict( i ) == 1 )
{
getcount++;
printf("%s current samples: %d\r", isPositive ? "POS":"NEG", getcount);
break;
}
}
}
return getcount;
}
void CvCascadeClassifier::writeParams( FileStorage &fs ) const
{
cascadeParams.write( fs );
fs << CC_STAGE_PARAMS << "{"; stageParams->write( fs ); fs << "}";
fs << CC_FEATURE_PARAMS << "{"; featureParams->write( fs ); fs << "}";
}
void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
{
2013-08-13 22:33:06 +08:00
featureEvaluator->writeFeatures( fs, featureMap );
}
void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const
{
char cmnt[30];
int i = 0;
2012-06-08 01:21:29 +08:00
fs << CC_STAGES << "[";
for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
it != stageClassifiers.end();++it, ++i )
{
sprintf( cmnt, "stage %d", i );
cvWriteComment( fs.fs, cmnt, 0 );
fs << "{";
2013-08-13 22:33:06 +08:00
(*it)->write( fs, featureMap );
fs << "}";
}
fs << "]";
}
bool CvCascadeClassifier::readParams( const FileNode &node )
{
if ( !node.isMap() || !cascadeParams.read( node ) )
return false;
2012-06-08 01:21:29 +08:00
2013-08-13 22:33:06 +08:00
stageParams = makePtr<CvCascadeBoostParams>();
FileNode rnode = node[CC_STAGE_PARAMS];
if ( !stageParams->read( rnode ) )
return false;
2012-06-08 01:21:29 +08:00
featureParams = CvFeatureParams::create(cascadeParams.featureType);
rnode = node[CC_FEATURE_PARAMS];
if ( !featureParams->read( rnode ) )
return false;
2012-06-08 01:21:29 +08:00
return true;
}
bool CvCascadeClassifier::readStages( const FileNode &node)
{
FileNode rnode = node[CC_STAGES];
if (!rnode.empty() || !rnode.isSeq())
return false;
stageClassifiers.reserve(numStages);
FileNodeIterator it = rnode.begin();
for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ )
{
2013-08-13 22:33:06 +08:00
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
if ( !tempStage->read( *it, featureEvaluator, *stageParams) )
return false;
stageClassifiers.push_back(tempStage);
}
return true;
}
// For old Haar Classifier file saving
#define ICV_HAAR_SIZE_NAME "size"
#define ICV_HAAR_STAGES_NAME "stages"
#define ICV_HAAR_TREES_NAME "trees"
#define ICV_HAAR_FEATURE_NAME "feature"
#define ICV_HAAR_RECTS_NAME "rects"
#define ICV_HAAR_TILTED_NAME "tilted"
#define ICV_HAAR_THRESHOLD_NAME "threshold"
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
#define ICV_HAAR_PARENT_NAME "parent"
#define ICV_HAAR_NEXT_NAME "next"
void CvCascadeClassifier::save( const string filename, bool baseFormat )
{
FileStorage fs( filename, FileStorage::WRITE );
if ( !fs.isOpened() )
return;
fs << FileStorage::getDefaultObjectName(filename) << "{";
if ( !baseFormat )
{
2012-06-08 01:21:29 +08:00
Mat featureMap;
getUsedFeaturesIdxMap( featureMap );
writeParams( fs );
fs << CC_STAGE_NUM << (int)stageClassifiers.size();
writeStages( fs, featureMap );
writeFeatures( fs, featureMap );
}
else
{
//char buf[256];
CvSeq* weak;
if ( cascadeParams.featureType != CvFeatureParams::HAAR )
CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only");
2012-06-08 01:21:29 +08:00
fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width <<
cascadeParams.winSize.height << "]";
fs << ICV_HAAR_STAGES_NAME << "[";
for( size_t si = 0; si < stageClassifiers.size(); si++ )
{
fs << "{"; //stage
/*sprintf( buf, "stage %d", si );
CV_CALL( cvWriteComment( fs, buf, 1 ) );*/
weak = stageClassifiers[si]->get_weak_predictors();
fs << ICV_HAAR_TREES_NAME << "[";
for( int wi = 0; wi < weak->total; wi++ )
{
int inner_node_idx = -1, total_inner_node_idx = -1;
queue<const CvDTreeNode*> inner_nodes_queue;
CvCascadeBoostTree* tree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
2012-06-08 01:21:29 +08:00
fs << "[";
/*sprintf( buf, "tree %d", wi );
CV_CALL( cvWriteComment( fs, buf, 1 ) );*/
const CvDTreeNode* tempNode;
2012-06-08 01:21:29 +08:00
inner_nodes_queue.push( tree->get_root() );
total_inner_node_idx++;
2012-06-08 01:21:29 +08:00
while (!inner_nodes_queue.empty())
{
tempNode = inner_nodes_queue.front();
inner_node_idx++;
fs << "{";
fs << ICV_HAAR_FEATURE_NAME << "{";
2013-08-13 22:33:06 +08:00
((CvHaarEvaluator*)featureEvaluator.get())->writeFeature( fs, tempNode->split->var_idx );
fs << "}";
fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c;
if( tempNode->left->left || tempNode->left->right )
{
inner_nodes_queue.push( tempNode->left );
total_inner_node_idx++;
fs << ICV_HAAR_LEFT_NODE_NAME << total_inner_node_idx;
}
else
fs << ICV_HAAR_LEFT_VAL_NAME << tempNode->left->value;
if( tempNode->right->left || tempNode->right->right )
{
inner_nodes_queue.push( tempNode->right );
total_inner_node_idx++;
fs << ICV_HAAR_RIGHT_NODE_NAME << total_inner_node_idx;
}
else
fs << ICV_HAAR_RIGHT_VAL_NAME << tempNode->right->value;
fs << "}"; // ICV_HAAR_FEATURE_NAME
inner_nodes_queue.pop();
}
fs << "]";
}
fs << "]"; //ICV_HAAR_TREES_NAME
fs << ICV_HAAR_STAGE_THRESHOLD_NAME << stageClassifiers[si]->getThreshold();
fs << ICV_HAAR_PARENT_NAME << (int)si-1 << ICV_HAAR_NEXT_NAME << -1;
fs << "}"; //stage
} /* for each stage */
fs << "]"; //ICV_HAAR_STAGES_NAME
}
fs << "}";
}
bool CvCascadeClassifier::load( const string cascadeDirName )
{
FileStorage fs( cascadeDirName + CC_PARAMS_FILENAME, FileStorage::READ );
if ( !fs.isOpened() )
return false;
FileNode node = fs.getFirstTopLevelNode();
if ( !readParams( node ) )
return false;
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
2013-08-13 22:33:06 +08:00
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
fs.release();
char buf[10];
for ( int si = 0; si < numStages; si++ )
{
sprintf( buf, "%s%d", "stage", si);
fs.open( cascadeDirName + buf + ".xml", FileStorage::READ );
node = fs.getFirstTopLevelNode();
if ( !fs.isOpened() )
break;
2013-08-13 22:33:06 +08:00
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
2013-08-13 22:33:06 +08:00
if ( !tempStage->read( node, featureEvaluator, *stageParams ))
{
fs.release();
break;
}
stageClassifiers.push_back(tempStage);
}
return true;
}
void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap )
{
int varCount = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize();
featureMap.create( 1, varCount, CV_32SC1 );
featureMap.setTo(Scalar(-1));
2012-06-08 01:21:29 +08:00
for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
it != stageClassifiers.end();++it )
2013-08-13 22:33:06 +08:00
(*it)->markUsedFeaturesInMap( featureMap );
2012-06-08 01:21:29 +08:00
for( int fi = 0, idx = 0; fi < varCount; fi++ )
if ( featureMap.at<int>(0, fi) >= 0 )
featureMap.ptr<int>(0)[fi] = idx++;
}