opencv/3rdparty/libjpeg/jcdctmgr.c

483 lines
16 KiB
C
Raw Normal View History

/*
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the forward-DCT management logic.
* This code selects a particular DCT implementation to be used,
* and it performs related housekeeping chores including coefficient
* quantization.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
/* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT).
* Each table is given in normal array order.
*/
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/* The current scaled-DCT routines require ISLOW-style divisor tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef DCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
/* Perform the DCT */
(*do_dct) (workspace, sample_data, start_col);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ register DCTELEM temp, qval;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
*
* In most files, at least half of the output values will be zero
* (at default quantization settings, more like three-quarters...)
* so we should ensure that this case is fast. On many machines,
* a comparison is enough cheaper than a divide to make a special test
* a win. Since both inputs will be nonnegative, we need only test
* for a < b to discover whether a/b is 0.
* If your machine's division is fast enough, define FAST_DIVIDE.
*/
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
}
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
/* Perform the DCT */
(*do_dct) (workspace, sample_data, start_col);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ register FAST_FLOAT temp;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
/* Apply the quantization and scaling factor */
temp = workspace[i] * divisors[i];
/* Round to nearest integer.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
* The maximum coefficient size is +-16K (for 12-bit data), so this
* code should work for either 16-bit or 32-bit ints.
*/
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
}
}
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
* the divisor table for each one.
* In the current implementation, DCT of all components is done during
* the first pass, even if only some components will be output in the
* first scan. Hence all components should be examined here.
*/
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
int method = 0;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper DCT routine for this component's scaling */
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
#ifdef DCT_SCALING_SUPPORTED
case ((1 << 8) + 1):
fdct->do_dct[ci] = jpeg_fdct_1x1;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_2x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((3 << 8) + 3):
fdct->do_dct[ci] = jpeg_fdct_3x3;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_4x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((5 << 8) + 5):
fdct->do_dct[ci] = jpeg_fdct_5x5;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_6x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((7 << 8) + 7):
fdct->do_dct[ci] = jpeg_fdct_7x7;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((9 << 8) + 9):
fdct->do_dct[ci] = jpeg_fdct_9x9;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((10 << 8) + 10):
fdct->do_dct[ci] = jpeg_fdct_10x10;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((11 << 8) + 11):
fdct->do_dct[ci] = jpeg_fdct_11x11;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((12 << 8) + 12):
fdct->do_dct[ci] = jpeg_fdct_12x12;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((13 << 8) + 13):
fdct->do_dct[ci] = jpeg_fdct_13x13;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((14 << 8) + 14):
fdct->do_dct[ci] = jpeg_fdct_14x14;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((15 << 8) + 15):
fdct->do_dct[ci] = jpeg_fdct_15x15;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((16 << 8) + 16):
fdct->do_dct[ci] = jpeg_fdct_16x16;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((16 << 8) + 8):
fdct->do_dct[ci] = jpeg_fdct_16x8;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((14 << 8) + 7):
fdct->do_dct[ci] = jpeg_fdct_14x7;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((12 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_12x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((10 << 8) + 5):
fdct->do_dct[ci] = jpeg_fdct_10x5;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((8 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_8x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 3):
fdct->do_dct[ci] = jpeg_fdct_6x3;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_4x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 1):
fdct->do_dct[ci] = jpeg_fdct_2x1;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((8 << 8) + 16):
fdct->do_dct[ci] = jpeg_fdct_8x16;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((7 << 8) + 14):
fdct->do_dct[ci] = jpeg_fdct_7x14;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 12):
fdct->do_dct[ci] = jpeg_fdct_6x12;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((5 << 8) + 10):
fdct->do_dct[ci] = jpeg_fdct_5x10;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 8):
fdct->do_dct[ci] = jpeg_fdct_4x8;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((3 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_3x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_2x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((1 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_1x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
#endif
case ((DCTSIZE << 8) + DCTSIZE):
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->do_dct[ci] = jpeg_fdct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->do_dct[ci] = jpeg_fdct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->do_float_dct[ci] = jpeg_fdct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
default:
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
break;
}
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
}
fdct->pub.forward_DCT[ci] = forward_DCT;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
}
}
fdct->pub.forward_DCT[ci] = forward_DCT;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
fdct->pub.forward_DCT[ci] = forward_DCT_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Initialize FDCT manager.
*/
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
}
}