mirror of
https://github.com/opencv/opencv.git
synced 2024-12-21 05:28:01 +08:00
319 lines
9.1 KiB
C++
319 lines
9.1 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include <float.h>
|
||
|
#include <limits.h>
|
||
|
|
||
|
/* Valery Mosyagin */
|
||
|
|
||
|
//#define TRACKLEVMAR
|
||
|
|
||
|
typedef void (*pointer_LMJac)( const CvMat* src, CvMat* dst );
|
||
|
typedef void (*pointer_LMFunc)( const CvMat* src, CvMat* dst );
|
||
|
|
||
|
/* Optimization using Levenberg-Marquardt */
|
||
|
void cvLevenbergMarquardtOptimization(pointer_LMJac JacobianFunction,
|
||
|
pointer_LMFunc function,
|
||
|
/*pointer_Err error_function,*/
|
||
|
CvMat *X0,CvMat *observRes,CvMat *resultX,
|
||
|
int maxIter,double epsilon)
|
||
|
{
|
||
|
/* This is not sparce method */
|
||
|
/* Make optimization using */
|
||
|
/* func - function to compute */
|
||
|
/* uses function to compute jacobian */
|
||
|
|
||
|
/* Allocate memory */
|
||
|
CvMat *vectX = 0;
|
||
|
CvMat *vectNewX = 0;
|
||
|
CvMat *resFunc = 0;
|
||
|
CvMat *resNewFunc = 0;
|
||
|
CvMat *error = 0;
|
||
|
CvMat *errorNew = 0;
|
||
|
CvMat *Jac = 0;
|
||
|
CvMat *delta = 0;
|
||
|
CvMat *matrJtJ = 0;
|
||
|
CvMat *matrJtJN = 0;
|
||
|
CvMat *matrJt = 0;
|
||
|
CvMat *vectB = 0;
|
||
|
|
||
|
CV_FUNCNAME( "cvLevenbegrMarquardtOptimization" );
|
||
|
__BEGIN__;
|
||
|
|
||
|
|
||
|
if( JacobianFunction == 0 || function == 0 || X0 == 0 || observRes == 0 || resultX == 0 )
|
||
|
{
|
||
|
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
|
||
|
}
|
||
|
|
||
|
if( !CV_IS_MAT(X0) || !CV_IS_MAT(observRes) || !CV_IS_MAT(resultX) )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnsupportedFormat, "Some of input parameters must be a matrices" );
|
||
|
}
|
||
|
|
||
|
|
||
|
int numVal;
|
||
|
int numFunc;
|
||
|
double valError;
|
||
|
double valNewError;
|
||
|
|
||
|
numVal = X0->rows;
|
||
|
numFunc = observRes->rows;
|
||
|
|
||
|
/* test input data */
|
||
|
if( X0->cols != 1 )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector X0 must be 1" );
|
||
|
}
|
||
|
|
||
|
if( observRes->cols != 1 )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector observed rusult must be 1" );
|
||
|
}
|
||
|
|
||
|
if( resultX->cols != 1 || resultX->rows != numVal )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnmatchedSizes, "Size of result vector X must be equals to X0" );
|
||
|
}
|
||
|
|
||
|
if( maxIter <= 0 )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of maximum iteration must be > 0" );
|
||
|
}
|
||
|
|
||
|
if( epsilon < 0 )
|
||
|
{
|
||
|
CV_ERROR( CV_StsUnmatchedSizes, "Epsilon must be >= 0" );
|
||
|
}
|
||
|
|
||
|
/* copy x0 to current value of x */
|
||
|
CV_CALL( vectX = cvCreateMat(numVal, 1, CV_64F) );
|
||
|
CV_CALL( vectNewX = cvCreateMat(numVal, 1, CV_64F) );
|
||
|
CV_CALL( resFunc = cvCreateMat(numFunc,1, CV_64F) );
|
||
|
CV_CALL( resNewFunc = cvCreateMat(numFunc,1, CV_64F) );
|
||
|
CV_CALL( error = cvCreateMat(numFunc,1, CV_64F) );
|
||
|
CV_CALL( errorNew = cvCreateMat(numFunc,1, CV_64F) );
|
||
|
CV_CALL( Jac = cvCreateMat(numFunc,numVal, CV_64F) );
|
||
|
CV_CALL( delta = cvCreateMat(numVal, 1, CV_64F) );
|
||
|
CV_CALL( matrJtJ = cvCreateMat(numVal, numVal, CV_64F) );
|
||
|
CV_CALL( matrJtJN = cvCreateMat(numVal, numVal, CV_64F) );
|
||
|
CV_CALL( matrJt = cvCreateMat(numVal, numFunc,CV_64F) );
|
||
|
CV_CALL( vectB = cvCreateMat(numVal, 1, CV_64F) );
|
||
|
|
||
|
cvCopy(X0,vectX);
|
||
|
|
||
|
/* ========== Main optimization loop ============ */
|
||
|
double change;
|
||
|
int currIter;
|
||
|
double alpha;
|
||
|
|
||
|
change = 1;
|
||
|
currIter = 0;
|
||
|
alpha = 0.001;
|
||
|
|
||
|
do {
|
||
|
|
||
|
/* Compute value of function */
|
||
|
function(vectX,resFunc);
|
||
|
/* Print result of function to file */
|
||
|
|
||
|
/* Compute error */
|
||
|
cvSub(observRes,resFunc,error);
|
||
|
|
||
|
//valError = error_function(observRes,resFunc);
|
||
|
/* Need to use new version of computing error (norm) */
|
||
|
valError = cvNorm(observRes,resFunc);
|
||
|
|
||
|
/* Compute Jacobian for given point vectX */
|
||
|
JacobianFunction(vectX,Jac);
|
||
|
|
||
|
/* Define optimal delta for J'*J*delta=J'*error */
|
||
|
/* compute J'J */
|
||
|
cvMulTransposed(Jac,matrJtJ,1);
|
||
|
|
||
|
cvCopy(matrJtJ,matrJtJN);
|
||
|
|
||
|
/* compute J'*error */
|
||
|
cvTranspose(Jac,matrJt);
|
||
|
cvmMul(matrJt,error,vectB);
|
||
|
|
||
|
|
||
|
/* Solve normal equation for given alpha and Jacobian */
|
||
|
do
|
||
|
{
|
||
|
/* Increase diagonal elements by alpha */
|
||
|
for( int i = 0; i < numVal; i++ )
|
||
|
{
|
||
|
double val;
|
||
|
val = cvmGet(matrJtJ,i,i);
|
||
|
cvmSet(matrJtJN,i,i,(1+alpha)*val);
|
||
|
}
|
||
|
|
||
|
/* Solve system to define delta */
|
||
|
cvSolve(matrJtJN,vectB,delta,CV_SVD);
|
||
|
|
||
|
/* We know delta and we can define new value of vector X */
|
||
|
cvAdd(vectX,delta,vectNewX);
|
||
|
|
||
|
/* Compute result of function for new vector X */
|
||
|
function(vectNewX,resNewFunc);
|
||
|
cvSub(observRes,resNewFunc,errorNew);
|
||
|
|
||
|
valNewError = cvNorm(observRes,resNewFunc);
|
||
|
|
||
|
currIter++;
|
||
|
|
||
|
if( valNewError < valError )
|
||
|
{/* accept new value */
|
||
|
valError = valNewError;
|
||
|
|
||
|
/* Compute relative change of required parameter vectorX. change = norm(curr-prev) / norm(curr) ) */
|
||
|
change = cvNorm(vectX, vectNewX, CV_RELATIVE_L2);
|
||
|
|
||
|
alpha /= 10;
|
||
|
cvCopy(vectNewX,vectX);
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
alpha *= 10;
|
||
|
}
|
||
|
|
||
|
} while ( currIter < maxIter );
|
||
|
/* new value of X and alpha were accepted */
|
||
|
|
||
|
} while ( change > epsilon && currIter < maxIter );
|
||
|
|
||
|
|
||
|
/* result was computed */
|
||
|
cvCopy(vectX,resultX);
|
||
|
|
||
|
__END__;
|
||
|
|
||
|
cvReleaseMat(&vectX);
|
||
|
cvReleaseMat(&vectNewX);
|
||
|
cvReleaseMat(&resFunc);
|
||
|
cvReleaseMat(&resNewFunc);
|
||
|
cvReleaseMat(&error);
|
||
|
cvReleaseMat(&errorNew);
|
||
|
cvReleaseMat(&Jac);
|
||
|
cvReleaseMat(&delta);
|
||
|
cvReleaseMat(&matrJtJ);
|
||
|
cvReleaseMat(&matrJtJN);
|
||
|
cvReleaseMat(&matrJt);
|
||
|
cvReleaseMat(&vectB);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*------------------------------------------------------------------------------*/
|
||
|
#if 0
|
||
|
//tests
|
||
|
void Jac_Func2(CvMat *vectX,CvMat *Jac)
|
||
|
{
|
||
|
double x = cvmGet(vectX,0,0);
|
||
|
double y = cvmGet(vectX,1,0);
|
||
|
cvmSet(Jac,0,0,2*(x-2));
|
||
|
cvmSet(Jac,0,1,2*(y+3));
|
||
|
|
||
|
cvmSet(Jac,1,0,1);
|
||
|
cvmSet(Jac,1,1,1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void Res_Func2(CvMat *vectX,CvMat *res)
|
||
|
{
|
||
|
double x = cvmGet(vectX,0,0);
|
||
|
double y = cvmGet(vectX,1,0);
|
||
|
cvmSet(res,0,0,(x-2)*(x-2)+(y+3)*(y+3));
|
||
|
cvmSet(res,1,0,x+y);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
double Err_Func2(CvMat *obs,CvMat *res)
|
||
|
{
|
||
|
CvMat *tmp;
|
||
|
tmp = cvCreateMat(obs->rows,1,CV_64F);
|
||
|
cvSub(obs,res,tmp);
|
||
|
|
||
|
double e;
|
||
|
e = cvNorm(tmp);
|
||
|
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
|
||
|
void TestOptimX2Y2()
|
||
|
{
|
||
|
CvMat vectX0;
|
||
|
double vectX0_dat[2];
|
||
|
vectX0 = cvMat(2,1,CV_64F,vectX0_dat);
|
||
|
vectX0_dat[0] = 5;
|
||
|
vectX0_dat[1] = -7;
|
||
|
|
||
|
CvMat observRes;
|
||
|
double observRes_dat[2];
|
||
|
observRes = cvMat(2,1,CV_64F,observRes_dat);
|
||
|
observRes_dat[0] = 0;
|
||
|
observRes_dat[1] = -1;
|
||
|
observRes_dat[0] = 0;
|
||
|
observRes_dat[1] = -1.2;
|
||
|
|
||
|
CvMat optimX;
|
||
|
double optimX_dat[2];
|
||
|
optimX = cvMat(2,1,CV_64F,optimX_dat);
|
||
|
|
||
|
|
||
|
LevenbegrMarquardtOptimization( Jac_Func2, Res_Func2, Err_Func2,
|
||
|
&vectX0,&observRes,&optimX,100,0.000001);
|
||
|
|
||
|
return;
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|