opencv/modules/gpu/src/cuda/nlm.cu

570 lines
23 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
using namespace cv::gpu;
typedef unsigned char uchar;
typedef unsigned short ushort;
//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
__device__ __forceinline__ float norm2(const float& v) { return v*v; }
__device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; }
__device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; }
__device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w; }
template<typename T, typename B>
2012-10-04 23:36:48 +08:00
__global__ void nlm_kernel(const PtrStep<T> src, PtrStepSz<T> dst, const B b, int search_radius, int block_radius, float noise_mult)
{
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
2012-10-04 23:36:48 +08:00
const int i = blockDim.y * blockIdx.y + threadIdx.y;
const int j = blockDim.x * blockIdx.x + threadIdx.x;
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
if (j >= dst.cols || i >= dst.rows)
return;
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
int bsize = search_radius + block_radius;
2012-10-17 07:18:30 +08:00
int search_window = 2 * search_radius + 1;
2012-10-04 23:36:48 +08:00
float minus_search_window2_inv = -1.f/(search_window * search_window);
value_type sum1 = VecTraits<value_type>::all(0);
float sum2 = 0.f;
2012-10-04 23:36:48 +08:00
if (j - bsize >= 0 && j + bsize < dst.cols && i - bsize >= 0 && i + bsize < dst.rows)
{
2012-10-17 07:18:30 +08:00
for(float y = -search_radius; y <= search_radius; ++y)
2012-10-04 23:36:48 +08:00
for(float x = -search_radius; x <= search_radius; ++x)
2012-10-17 07:18:30 +08:00
{
2012-10-04 23:36:48 +08:00
float dist2 = 0;
for(float ty = -block_radius; ty <= block_radius; ++ty)
for(float tx = -block_radius; tx <= block_radius; ++tx)
{
2012-10-04 23:36:48 +08:00
value_type bv = saturate_cast<value_type>(src(i + y + ty, j + x + tx));
value_type av = saturate_cast<value_type>(src(i + ty, j + tx));
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
dist2 += norm2(av - bv);
}
2012-10-04 23:36:48 +08:00
float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);
/*if (i == 255 && j == 255)
printf("%f %f\n", w, dist2 * minus_h2_inv + (x * x + y * y) * minus_search_window2_inv);*/
2012-10-04 23:36:48 +08:00
sum1 = sum1 + w * saturate_cast<value_type>(src(i + y, j + x));
sum2 += w;
}
}
else
{
2012-10-04 23:36:48 +08:00
for(float y = -search_radius; y <= search_radius; ++y)
for(float x = -search_radius; x <= search_radius; ++x)
{
2012-10-04 23:36:48 +08:00
float dist2 = 0;
for(float ty = -block_radius; ty <= block_radius; ++ty)
for(float tx = -block_radius; tx <= block_radius; ++tx)
{
2012-10-04 23:36:48 +08:00
value_type bv = saturate_cast<value_type>(b.at(i + y + ty, j + x + tx, src));
2012-10-17 07:18:30 +08:00
value_type av = saturate_cast<value_type>(b.at(i + ty, j + tx, src));
2012-10-04 23:36:48 +08:00
dist2 += norm2(av - bv);
}
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);
2012-10-04 23:36:48 +08:00
sum1 = sum1 + w * saturate_cast<value_type>(b.at(i + y, j + x, src));
sum2 += w;
}
}
2012-10-04 23:36:48 +08:00
dst(i, j) = saturate_cast<T>(sum1 / sum2);
}
template<typename T, template <typename> class B>
void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream)
{
dim3 block (32, 8);
dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y));
B<T> b(src.rows, src.cols);
2012-10-04 23:36:48 +08:00
int block_window = 2 * block_radius + 1;
2012-10-17 07:18:30 +08:00
float minus_h2_inv = -1.f/(h * h * VecTraits<T>::cn);
2012-10-04 23:36:48 +08:00
float noise_mult = minus_h2_inv/(block_window * block_window);
2012-10-17 07:18:30 +08:00
cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel<T, B<T> >, cudaFuncCachePreferL1) );
2012-10-04 23:36:48 +08:00
nlm_kernel<<<grid, block>>>((PtrStepSz<T>)src, (PtrStepSz<T>)dst, b, search_radius, block_radius, noise_mult);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template<typename T>
void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream)
{
typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream);
2012-10-17 07:18:30 +08:00
static func_t funcs[] =
{
nlm_caller<T, BrdReflect101>,
nlm_caller<T, BrdReplicate>,
nlm_caller<T, BrdConstant>,
nlm_caller<T, BrdReflect>,
nlm_caller<T, BrdWrap>,
};
funcs[borderMode](src, dst, search_radius, block_radius, h, stream);
}
template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
2012-09-27 22:11:06 +08:00
template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
}
}}}
2012-09-27 22:11:06 +08:00
//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing (fast approximate version)
namespace cv { namespace gpu { namespace device
{
namespace imgproc
2012-10-17 07:18:30 +08:00
{
template <int cn> struct Unroll;
template <> struct Unroll<1>
{
template <int BLOCK_SIZE>
static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*> smem_tuple(float* smem)
{
return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE);
}
static __device__ __forceinline__ thrust::tuple<float&, float&> tie(float& val1, float& val2)
{
return thrust::tie(val1, val2);
}
static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float> > op()
{
plus<float> op;
return thrust::make_tuple(op, op);
}
};
template <> struct Unroll<2>
{
template <int BLOCK_SIZE>
static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
{
return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE);
}
static __device__ __forceinline__ thrust::tuple<float&, float&, float&> tie(float& val1, float2& val2)
{
return thrust::tie(val1, val2.x, val2.y);
}
static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float> > op()
{
plus<float> op;
return thrust::make_tuple(op, op, op);
}
};
template <> struct Unroll<3>
{
template <int BLOCK_SIZE>
static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
{
return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE);
}
static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&> tie(float& val1, float3& val2)
{
return thrust::tie(val1, val2.x, val2.y, val2.z);
}
static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float> > op()
{
plus<float> op;
return thrust::make_tuple(op, op, op, op);
}
};
template <> struct Unroll<4>
{
template <int BLOCK_SIZE>
static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
{
return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE, smem + 4 * BLOCK_SIZE);
}
static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&, float&> tie(float& val1, float4& val2)
{
return thrust::tie(val1, val2.x, val2.y, val2.z, val2.w);
}
static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float>, plus<float> > op()
{
plus<float> op;
return thrust::make_tuple(op, op, op, op, op);
}
};
2012-09-27 22:11:06 +08:00
__device__ __forceinline__ int calcDist(const uchar& a, const uchar& b) { return (a-b)*(a-b); }
__device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); }
__device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); }
template <class T> struct FastNonLocalMenas
{
enum
{
2012-10-04 23:36:48 +08:00
CTA_SIZE = 128,
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
TILE_COLS = 128,
2012-09-27 22:11:06 +08:00
TILE_ROWS = 32,
STRIDE = CTA_SIZE
};
struct plus
{
2012-10-04 23:36:48 +08:00
__device__ __forceinline__ float operator()(float v1, float v2) const { return v1 + v2; }
2012-09-27 22:11:06 +08:00
};
int search_radius;
int block_radius;
int search_window;
int block_window;
float minus_h2_inv;
FastNonLocalMenas(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2),
search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {}
PtrStep<T> src;
mutable PtrStepi buffer;
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
__device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
2012-09-27 22:11:06 +08:00
{
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
dist_sums[index] = 0;
for(int tx = 0; tx < block_window; ++tx)
2012-10-04 23:36:48 +08:00
col_sums(tx, index) = 0;
2012-09-27 22:11:06 +08:00
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j;
int by = i + y - search_radius;
int bx = j + x - search_radius;
#if 1
for (int tx = -block_radius; tx <= block_radius; ++tx)
{
2012-10-04 23:36:48 +08:00
int col_sum = 0;
2012-09-27 22:11:06 +08:00
for (int ty = -block_radius; ty <= block_radius; ++ty)
{
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
dist_sums[index] += dist;
2012-10-04 23:36:48 +08:00
col_sum += dist;
2012-09-27 22:11:06 +08:00
}
2012-10-04 23:36:48 +08:00
col_sums(tx + block_radius, index) = col_sum;
2012-09-27 22:11:06 +08:00
}
#else
for (int ty = -block_radius; ty <= block_radius; ++ty)
for (int tx = -block_radius; tx <= block_radius; ++tx)
{
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
dist_sums[index] += dist;
2012-10-17 07:18:30 +08:00
col_sums(tx + block_radius, index) += dist;
2012-09-27 22:11:06 +08:00
}
#endif
2012-10-04 23:36:48 +08:00
up_col_sums(j, index) = col_sums(block_window - 1, index);
2012-09-27 22:11:06 +08:00
}
}
2012-10-04 23:36:48 +08:00
__device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j + block_radius;
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
2012-10-04 23:36:48 +08:00
int col_sum = 0;
2012-09-27 22:11:06 +08:00
for (int ty = -block_radius; ty <= block_radius; ++ty)
2012-10-17 07:18:30 +08:00
col_sum += calcDist(src(ay + ty, ax), src(by + ty, bx));
2012-10-04 23:36:48 +08:00
dist_sums[index] += col_sum - col_sums(first, index);
col_sums(first, index) = col_sum;
up_col_sums(j, index) = col_sum;
2012-09-27 22:11:06 +08:00
}
}
2012-10-04 23:36:48 +08:00
__device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
2012-09-27 22:11:06 +08:00
{
int ay = i;
int ax = j + block_radius;
T a_up = src(ay - block_radius - 1, ax);
T a_down = src(ay + block_radius, ax);
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
int y = index / search_window;
int x = index - y * search_window;
2012-10-04 23:36:48 +08:00
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
2012-09-27 22:11:06 +08:00
T b_up = src(by - block_radius - 1, bx);
T b_down = src(by + block_radius, bx);
2012-10-04 23:36:48 +08:00
int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
dist_sums[index] += col_sum - col_sums(first, index);
2012-10-17 07:18:30 +08:00
col_sums(first, index) = col_sum;
2012-10-04 23:36:48 +08:00
up_col_sums(j, index) = col_sum;
2012-09-27 22:11:06 +08:00
}
}
2012-10-04 23:36:48 +08:00
__device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums, T& dst) const
2012-09-27 22:11:06 +08:00
{
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type;
float weights_sum = 0;
sum_type sum = VecTraits<sum_type>::all(0);
float bw2_inv = 1.f/(block_window * block_window);
2012-10-04 23:36:48 +08:00
int sx = j - search_radius;
int sy = i - search_radius;
2012-09-27 22:11:06 +08:00
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int y = index / search_window;
int x = index - y * search_window;
float avg_dist = dist_sums[index] * bw2_inv;
float weight = __expf(avg_dist * minus_h2_inv);
weights_sum += weight;
2012-10-04 23:36:48 +08:00
sum = sum + weight * saturate_cast<sum_type>(src(sy + y, sx + x));
2012-09-27 22:11:06 +08:00
}
2012-10-17 07:18:30 +08:00
__shared__ float cta_buffer[CTA_SIZE * (VecTraits<T>::cn + 1)];
2012-09-27 22:11:06 +08:00
reduce<CTA_SIZE>(Unroll<VecTraits<T>::cn>::template smem_tuple<CTA_SIZE>(cta_buffer),
Unroll<VecTraits<T>::cn>::tie(weights_sum, sum),
threadIdx.x,
Unroll<VecTraits<T>::cn>::op());
2012-09-27 22:11:06 +08:00
if (threadIdx.x == 0)
dst = saturate_cast<T>(sum / weights_sum);
2012-09-27 22:11:06 +08:00
}
__device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const
{
int tbx = blockIdx.x * TILE_COLS;
int tby = blockIdx.y * TILE_ROWS;
int tex = ::min(tbx + TILE_COLS, dst.cols);
int tey = ::min(tby + TILE_ROWS, dst.rows);
2012-10-04 23:36:48 +08:00
PtrStepi col_sums;
col_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
col_sums.step = buffer.step;
2012-09-27 22:11:06 +08:00
2012-10-04 23:36:48 +08:00
PtrStepi up_col_sums;
up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window;
up_col_sums.step = buffer.step;
2012-09-27 22:11:06 +08:00
extern __shared__ int dist_sums[]; //search_window * search_window
2012-10-04 23:36:48 +08:00
int first = 0;
2012-09-27 22:11:06 +08:00
for (int i = tby; i < tey; ++i)
for (int j = tbx; j < tex; ++j)
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
__syncthreads();
if (j == tbx)
{
2012-10-04 23:36:48 +08:00
initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums);
first = 0;
2012-09-27 22:11:06 +08:00
}
else
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
if (i == tby)
2012-10-04 23:36:48 +08:00
shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums);
2012-09-27 22:11:06 +08:00
else
2012-10-04 23:36:48 +08:00
shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums);
2012-09-27 22:11:06 +08:00
2012-10-04 23:36:48 +08:00
first = (first + 1) % block_window;
2012-09-27 22:11:06 +08:00
}
__syncthreads();
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
convolve_window(i, j, dist_sums, col_sums, up_col_sums, dst(i, j));
2012-09-27 22:11:06 +08:00
}
}
};
template<typename T>
__global__ void fast_nlm_kernel(const FastNonLocalMenas<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); }
void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
2012-10-17 07:18:30 +08:00
{
2012-09-27 22:11:06 +08:00
typedef FastNonLocalMenas<uchar> FNLM;
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
buffer_cols = search_window * search_window * grid.y;
buffer_rows = src.cols + block_window * grid.x;
}
template<typename T>
void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
int search_window, int block_window, float h, cudaStream_t stream)
{
typedef FastNonLocalMenas<T> FNLM;
FNLM fnlm(search_window, block_window, h);
fnlm.src = (PtrStepSz<T>)src;
2012-10-17 07:18:30 +08:00
fnlm.buffer = buffer;
2012-09-27 22:11:06 +08:00
dim3 block(FNLM::CTA_SIZE, 1);
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
int smem = search_window * search_window * sizeof(int);
2012-10-17 07:18:30 +08:00
2012-09-27 22:11:06 +08:00
fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
2012-10-04 23:36:48 +08:00
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
__global__ void fnlm_split_kernel(const PtrStepSz<uchar3> lab, PtrStepb l, PtrStep<uchar2> ab)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < lab.cols && y < lab.rows)
{
uchar3 p = lab(y, x);
ab(y,x) = make_uchar2(p.y, p.z);
2012-10-17 07:18:30 +08:00
l(y,x) = p.x;
2012-10-04 23:36:48 +08:00
}
}
2012-10-17 07:18:30 +08:00
2012-10-04 23:36:48 +08:00
void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream)
{
dim3 b(32, 8);
dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));
fnlm_split_kernel<<<g, b>>>(lab, l, ab);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void fnlm_merge_kernel(const PtrStepb l, const PtrStep<uchar2> ab, PtrStepSz<uchar3> lab)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < lab.cols && y < lab.rows)
{
uchar2 p = ab(y, x);
2012-10-17 07:18:30 +08:00
lab(y, x) = make_uchar3(l(y, x), p.x, p.y);
2012-10-04 23:36:48 +08:00
}
}
void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream)
{
dim3 b(32, 8);
dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));
fnlm_merge_kernel<<<g, b>>>(l, ab, lab);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2012-09-27 22:11:06 +08:00
}
}}}
#endif /* CUDA_DISABLER */