2011-07-14 22:43:25 +08:00
<?xml version="1.0"?>
2014-06-04 19:24:33 +08:00
<!--
12x20 Right ear (in the image) detector computed with 5000 positive and 15000 negative samples
2011-present, Modesto Castrillon-Santana (SIANI, Universidad de Las Palmas de Gran Canaria, Spain.
2011-07-14 22:43:25 +08:00
COMMERCIAL USE:
2014-06-04 19:24:33 +08:00
If you have any commercial interest in this work contact mcastrillon@iusiani.ulpgc.es
Creative Commons Attribution-NonCommercial 4.0 International Public License
By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International
Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these
terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and
conditions.
Section 1 Definitions.
Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public
License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.
Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
Licensor means the individual(s) or entity(ies) granting rights under this Public License.
NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
Section 2 Scope.
License grant.
Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
Term. The term of this Public License is specified in Section 6(a).
Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
Downstream recipients.
Offer from the Licensor Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
Other rights.
Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
Patent and trademark rights are not licensed under this Public License.
To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
Section 3 License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following conditions.
Attribution.
If You Share the Licensed Material (including in modified form), You must:
retain the following if it is supplied by the Licensor with the Licensed Material:
identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
a copyright notice;
a notice that refers to this Public License;
a notice that refers to the disclaimer of warranties;
a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
in any publication cite the following paper:
@INPROCEEDINGS{Castrillon11-caepia,
author = "Castrill\'on Santana, M. and Lorenzo Navarro, J. and Hern\'andez Sosa, D. ",
title = "An Study on Ear Detection and its Applications to Face Detection",
booktitle = "Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA)",
year = "2011",
month = "November",
address = "La Laguna, Spain",
}
indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.
Section 4 Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
Section 5 Disclaimer of Warranties and Limitation of Liability.
Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.
The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
Section 6 Term and Termination.
This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
Section 7 Other Terms and Conditions.
The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
Section 8 Interpretation.
For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
-->
2011-07-14 22:43:25 +08:00
<opencv_storage >
2013-12-11 02:54:37 +08:00
<cascade type_id= "opencv-cascade-classifier" > <stageType > BOOST</stageType>
<featureType > HAAR</featureType>
<height > 12</height>
<width > 20</width>
<stageParams >
<maxWeakCount > 61</maxWeakCount> </stageParams>
<featureParams >
<maxCatCount > 0</maxCatCount> </featureParams>
<stageNum > 20</stageNum>
2011-07-14 22:43:25 +08:00
<stages >
<_ >
2013-12-11 02:54:37 +08:00
<maxWeakCount > 7</maxWeakCount>
<stageThreshold > -1.3802499771118164e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 0 -1.2393590062856674e-01</internalNodes>
<leafValues >
8.2578802108764648e-01 -6.7602032423019409e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 1 9.4228880479931831e-03</internalNodes>
<leafValues >
-1.2722210586071014e-01 3.3211699128150940e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 2 -1.1084940284490585e-02</internalNodes>
<leafValues >
5.6749510765075684e-01 -5.6716197729110718e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 3 -2.0189690589904785e-01</internalNodes>
<leafValues >
-7.6717972755432129e-01 1.9637049734592438e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 4 -4.7402849304489791e-05</internalNodes>
<leafValues >
3.8455748558044434e-01 -6.7010718584060669e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 5 -8.6445426568388939e-03</internalNodes>
<leafValues >
-6.9345837831497192e-01 1.0593380033969879e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 6 5.0770420784829184e-05</internalNodes>
<leafValues >
-6.8352818489074707e-01 3.5795739293098450e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 9</maxWeakCount>
<stageThreshold > -1.4652169942855835e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 7 -1.8316349387168884e-01</internalNodes>
<leafValues >
7.8830862045288086e-01 -5.8876812458038330e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 8 2.5380790233612061e-02</internalNodes>
<leafValues >
-7.4764448404312134e-01 4.1486009955406189e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 9 1.4207419939339161e-02</internalNodes>
<leafValues >
-7.8411531448364258e-01 2.7354270219802856e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 10 8.6809601634740829e-03</internalNodes>
<leafValues >
-1.0974329710006714e-01 9.4718709588050842e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 11 -4.1219559498131275e-03</internalNodes>
<leafValues >
3.1739580631256104e-01 -5.4334312677383423e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 12 -1.1700070463120937e-02</internalNodes>
<leafValues >
3.9653539657592773e-01 -3.7434050440788269e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 13 2.8762829303741455e-01</internalNodes>
<leafValues >
-1.7733460664749146e-01 8.8516682386398315e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 14 -4.8463501036167145e-02</internalNodes>
<leafValues >
-6.0947227478027344e-01 1.3633400201797485e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 15 7.6523773372173309e-02</internalNodes>
<leafValues >
-2.9950559139251709e-01 6.1522072553634644e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 18</maxWeakCount>
<stageThreshold > -2.0372869968414307e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 16 1.1777380108833313e-01</internalNodes>
<leafValues >
-5.8754861354827881e-01 6.1994218826293945e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 17 2.9533330351114273e-02</internalNodes>
<leafValues >
-4.2420691251754761e-01 3.6524820327758789e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 18 6.1603458598256111e-03</internalNodes>
<leafValues >
-7.9607379436492920e-01 3.2861700654029846e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 19 -5.9753831010311842e-05</internalNodes>
<leafValues >
1.0398519784212112e-01 -4.5819509029388428e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 20 -3.6190438549965620e-04</internalNodes>
<leafValues >
5.3506380319595337e-01 -6.4719748497009277e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 21 2.0906500518321991e-02</internalNodes>
<leafValues >
-1.6793949902057648e-01 2.4539050459861755e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 22 8.2527771592140198e-03</internalNodes>
<leafValues >
-8.5986042022705078e-01 2.2863869369029999e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 23 5.9341029264032841e-03</internalNodes>
<leafValues >
-4.6319939196109772e-02 -6.0758531093597412e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 24 1.8554080452304333e-04</internalNodes>
<leafValues >
-5.7996147871017456e-01 3.7694430351257324e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 25 -7.2531788609921932e-03</internalNodes>
<leafValues >
-5.6681227684020996e-01 -1.9910290837287903e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 26 4.0826769691193476e-05</internalNodes>
<leafValues >
-6.2813758850097656e-01 4.0546119213104248e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 27 -1.0268500074744225e-02</internalNodes>
<leafValues >
4.5032399892807007e-01 -2.7399060130119324e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 28 -3.5408639814704657e-03</internalNodes>
<leafValues >
3.4393149614334106e-01 -6.7639619112014771e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 29 -6.9421626627445221e-02</internalNodes>
<leafValues >
6.5173202753067017e-01 -7.4326410889625549e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 30 7.1986039984039962e-05</internalNodes>
<leafValues >
-4.5737218856811523e-01 3.0109271407127380e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 31 6.3741732446942478e-05</internalNodes>
<leafValues >
-5.5820369720458984e-01 1.9148319959640503e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 32 4.4920871005160734e-05</internalNodes>
<leafValues >
-5.7379388809204102e-01 2.1276189386844635e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 33 1.3159319758415222e-01</internalNodes>
<leafValues >
-2.2754240036010742e-01 2.8766331076622009e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 13</maxWeakCount>
<stageThreshold > -1.5061739683151245e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 34 -1.5496319532394409e-01</internalNodes>
<leafValues >
7.2985649108886719e-01 -5.9489607810974121e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 35 8.4833214059472084e-03</internalNodes>
<leafValues >
1.3606220483779907e-01 -4.3773031234741211e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 36 -3.2831680029630661e-02</internalNodes>
<leafValues >
6.7158091068267822e-01 -2.8739199042320251e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 37 -2.8853790834546089e-02</internalNodes>
<leafValues >
4.5923650264739990e-01 -4.9327030777931213e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 38 1.7052419483661652e-01</internalNodes>
<leafValues >
-1.6527549922466278e-01 8.4507262706756592e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 39 1.0879129916429520e-01</internalNodes>
<leafValues >
-2.8913050889968872e-01 5.3111201524734497e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 40 3.0960019212216139e-03</internalNodes>
<leafValues >
-5.5323868989944458e-01 2.6134639978408813e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 41 -3.3618099987506866e-02</internalNodes>
<leafValues >
2.2911429405212402e-01 -5.5924427509307861e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 42 -1.1074040085077286e-03</internalNodes>
<leafValues >
-6.3096380233764648e-01 1.5855440497398376e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 43 -4.4385627843439579e-03</internalNodes>
<leafValues >
-6.3817399740219116e-01 1.2779480218887329e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 44 -9.4127003103494644e-03</internalNodes>
<leafValues >
3.5108420252799988e-01 -3.4738400578498840e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 45 -3.2499480992555618e-02</internalNodes>
<leafValues >
6.7672997713088989e-01 -5.5984470993280411e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 46 -1.3464169576764107e-02</internalNodes>
<leafValues >
-7.5412607192993164e-01 1.5986099839210510e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 17</maxWeakCount>
<stageThreshold > -1.5266020298004150e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 47 -1.8050560355186462e-01</internalNodes>
<leafValues >
7.1835839748382568e-01 -5.2469527721405029e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 48 -1.5271560288965702e-02</internalNodes>
<leafValues >
3.2215949892997742e-01 -1.5855640172958374e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 49 -3.4879799932241440e-02</internalNodes>
<leafValues >
3.2105189561843872e-01 -5.3338629007339478e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 50 -3.1743600964546204e-02</internalNodes>
<leafValues >
4.1040870547294617e-01 -3.7935909628868103e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 51 4.8427619040012360e-03</internalNodes>
<leafValues >
-6.9584208726882935e-01 2.4080069363117218e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 52 4.9639631062746048e-02</internalNodes>
<leafValues >
8.0581977963447571e-03 -5.4770648479461670e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 53 1.1154930293560028e-01</internalNodes>
<leafValues >
-2.4036459624767303e-01 5.6387817859649658e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 54 -2.6947790756821632e-02</internalNodes>
<leafValues >
-4.5162969827651978e-01 6.0060828924179077e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 55 -4.9296129494905472e-02</internalNodes>
<leafValues >
8.3912831544876099e-01 -1.8871270120143890e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 56 2.8315439820289612e-02</internalNodes>
<leafValues >
6.9766468368470669e-03 1.8534269928932190e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 57 3.3421538770198822e-02</internalNodes>
<leafValues >
-3.1101679801940918e-01 4.0044930577278137e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 58 -6.2644667923450470e-03</internalNodes>
<leafValues >
-4.4615790247917175e-01 6.6276572644710541e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 59 2.5548560079187155e-03</internalNodes>
<leafValues >
1.3413320481777191e-01 -7.4927258491516113e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 60 2.9710179194808006e-02</internalNodes>
<leafValues >
6.1377300880849361e-04 -7.7615362405776978e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 61 -4.1485700756311417e-02</internalNodes>
<leafValues >
5.9405767917633057e-01 -1.6889290511608124e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 62 1.2231590226292610e-02</internalNodes>
<leafValues >
5.1312480121850967e-02 -7.5303572416305542e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 63 -4.3153190053999424e-03</internalNodes>
<leafValues >
-6.4812111854553223e-01 1.3281610608100891e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 17</maxWeakCount>
<stageThreshold > -1.4295140504837036e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 64 1.1714699864387512e-01</internalNodes>
<leafValues >
-5.1155489683151245e-01 5.4587250947952271e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 65 5.2537951618432999e-02</internalNodes>
<leafValues >
-2.6988661289215088e-01 3.4098041057586670e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 66 -1.9980749115347862e-02</internalNodes>
<leafValues >
3.5662230849266052e-01 -4.4640049338340759e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 67 -1.2166350334882736e-01</internalNodes>
<leafValues >
4.5662569999694824e-01 -6.7647598683834076e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 68 1.6176940873265266e-02</internalNodes>
<leafValues >
-4.8407769203186035e-01 2.5647491216659546e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 69 -1.2731030583381653e-01</internalNodes>
<leafValues >
7.8568279743194580e-01 -7.6182372868061066e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 70 -3.7296859081834555e-03</internalNodes>
<leafValues >
2.7144059538841248e-01 -4.8822438716888428e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 71 -1.7392159998416901e-01</internalNodes>
<leafValues >
7.3156762123107910e-01 -4.0217950940132141e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 72 -9.4516716897487640e-02</internalNodes>
<leafValues >
4.9297851324081421e-01 -2.1850970387458801e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 73 7.9759500920772552e-02</internalNodes>
<leafValues >
-1.0667549818754196e-01 2.1722890436649323e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 74 2.9159070923924446e-02</internalNodes>
<leafValues >
1.5513190627098083e-01 -7.9432719945907593e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 75 6.8567609414458275e-03</internalNodes>
<leafValues >
-7.7142190933227539e-01 1.0970850288867950e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 76 2.6352910790592432e-03</internalNodes>
<leafValues >
9.6235923469066620e-02 -7.4925291538238525e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 77 -4.1161300614476204e-03</internalNodes>
<leafValues >
1.7448060214519501e-01 -4.6480000019073486e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 78 -2.7307260315865278e-03</internalNodes>
<leafValues >
-5.8561611175537109e-01 1.1779639869928360e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 79 -1.9059289246797562e-02</internalNodes>
<leafValues >
-6.8809962272644043e-01 1.0283970087766647e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 80 -2.9182219877839088e-03</internalNodes>
<leafValues >
-6.6901868581771851e-01 8.3721928298473358e-02</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 26</maxWeakCount>
<stageThreshold > -1.5588049888610840e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 81 8.1108748912811279e-02</internalNodes>
<leafValues >
-3.9180481433868408e-01 5.3625607490539551e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 82 9.1598061844706535e-03</internalNodes>
<leafValues >
-4.6528929471969604e-01 3.3383831381797791e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 83 8.0795027315616608e-04</internalNodes>
<leafValues >
-7.5230997800827026e-01 1.4381100237369537e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 84 2.4406640231609344e-01</internalNodes>
<leafValues >
-2.2846619784832001e-01 5.0088721513748169e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 85 9.9084907560609281e-05</internalNodes>
<leafValues >
-4.9552011489868164e-01 2.3163549602031708e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 86 -1.6304260492324829e-01</internalNodes>
<leafValues >
8.0807077884674072e-01 -1.4503139257431030e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 87 9.9489316344261169e-03</internalNodes>
<leafValues >
-1.3804569840431213e-01 6.0897988080978394e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 88 7.6701432466506958e-02</internalNodes>
<leafValues >
3.7772629410028458e-02 -5.3447282314300537e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 89 4.7309949994087219e-02</internalNodes>
<leafValues >
-3.6191630363464355e-01 2.8269779682159424e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 90 -2.2022439166903496e-02</internalNodes>
<leafValues >
-5.2068692445755005e-01 9.4968706369400024e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 91 1.3980070129036903e-02</internalNodes>
<leafValues >
1.1217589676380157e-01 -6.8278092145919800e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 92 -6.6961131989955902e-02</internalNodes>
<leafValues >
8.7730789184570312e-01 -2.7844179421663284e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 93 1.1592600494623184e-03</internalNodes>
<leafValues >
-3.4661638736724854e-01 2.0498119294643402e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 94 1.9640380516648293e-02</internalNodes>
<leafValues >
-1.2608189880847931e-01 2.8791791200637817e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 95 -1.0507949627935886e-02</internalNodes>
<leafValues >
-6.1253058910369873e-01 1.2488999962806702e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 96 1.7976740375161171e-02</internalNodes>
<leafValues >
-1.2991739809513092e-01 1.4235779643058777e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 97 -3.1597379595041275e-02</internalNodes>
<leafValues >
3.3326789736747742e-01 -2.4774129688739777e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 98 -1.8917859997600317e-03</internalNodes>
<leafValues >
-5.3087908029556274e-01 8.8928163051605225e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 99 -1.7453400418162346e-02</internalNodes>
<leafValues >
-6.4604520797729492e-01 1.1086379736661911e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 100 1.0619490407407284e-02</internalNodes>
<leafValues >
1.4190349727869034e-02 -2.1650099754333496e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 101 -1.1998750269412994e-03</internalNodes>
<leafValues >
-6.4023351669311523e-01 1.0543160140514374e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 102 9.0056620538234711e-03</internalNodes>
<leafValues >
6.6442847251892090e-02 -3.8506388664245605e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 103 -3.1365811824798584e-02</internalNodes>
<leafValues >
4.9019768834114075e-01 -1.3340839743614197e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 104 8.8146664202213287e-03</internalNodes>
<leafValues >
-7.5805522501468658e-02 5.1142227649688721e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 105 -2.4432060308754444e-03</internalNodes>
<leafValues >
-5.3494578599929810e-01 1.3186639547348022e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 106 3.3595509827136993e-02</internalNodes>
<leafValues >
1.8829340115189552e-02 -8.7616902589797974e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 25</maxWeakCount>
<stageThreshold > -1.5198639631271362e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 107 -1.9901029765605927e-01</internalNodes>
<leafValues >
4.1589239239692688e-01 -4.6403810381889343e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 108 1.0957729537039995e-03</internalNodes>
<leafValues >
-2.7428150177001953e-01 2.1992009878158569e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 109 3.5783050116151571e-03</internalNodes>
<leafValues >
-2.5449270009994507e-01 5.4316788911819458e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 110 3.5569820553064346e-02</internalNodes>
<leafValues >
4.2951688170433044e-02 -6.6588342189788818e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 111 -3.8403531070798635e-03</internalNodes>
<leafValues >
1.9703429937362671e-01 -5.4586201906204224e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 112 3.9690821431577206e-03</internalNodes>
<leafValues >
-5.1554411649703979e-01 2.2360439598560333e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 113 7.4965478852391243e-03</internalNodes>
<leafValues >
1.5371499955654144e-01 -6.1535251140594482e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 114 -8.9704096317291260e-03</internalNodes>
<leafValues >
1.8355900049209595e-01 -2.8429880738258362e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 115 -5.6080069392919540e-02</internalNodes>
<leafValues >
7.7755087614059448e-01 -9.8359443247318268e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 116 1.0908209718763828e-02</internalNodes>
<leafValues >
6.3484668731689453e-02 -6.9791257381439209e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 117 -9.8930671811103821e-03</internalNodes>
<leafValues >
4.0726318955421448e-01 -2.5781801342964172e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 118 1.8678830564022064e-01</internalNodes>
<leafValues >
-2.7086579799652100e-01 3.6147558689117432e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 119 -9.4373157480731606e-04</internalNodes>
<leafValues >
-5.8118808269500732e-01 1.5266190469264984e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 120 -2.6823019608855247e-02</internalNodes>
<leafValues >
7.3039489984512329e-01 -5.7183459401130676e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 121 -8.4266774356365204e-03</internalNodes>
<leafValues >
-6.9740217924118042e-01 1.1783199757337570e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 122 4.4732030481100082e-02</internalNodes>
<leafValues >
-6.6901608370244503e-03 -3.9551690220832825e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 123 1.9846759736537933e-02</internalNodes>
<leafValues >
-2.5491309165954590e-01 2.6959219574928284e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 124 -1.1466080322861671e-03</internalNodes>
<leafValues >
-4.7784709930419922e-01 1.4147639274597168e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 125 9.8631740547716618e-04</internalNodes>
<leafValues >
-2.9782509803771973e-01 2.1989880502223969e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 126 -1.3526080548763275e-01</internalNodes>
<leafValues >
7.3641002178192139e-01 -3.6679711192846298e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 127 -1.4555889647454023e-03</internalNodes>
<leafValues >
-4.9741968512535095e-01 1.4351129531860352e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 128 -1.3439180329442024e-02</internalNodes>
<leafValues >
4.4307011365890503e-01 -6.1504751443862915e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 129 5.8535612188279629e-03</internalNodes>
<leafValues >
8.6272820830345154e-02 -6.9572478532791138e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 130 -3.6728219129145145e-03</internalNodes>
<leafValues >
-2.4009980261325836e-01 7.2359912097454071e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 131 2.8104060329496861e-03</internalNodes>
<leafValues >
-2.8405401110649109e-01 2.0643989741802216e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 23</maxWeakCount>
<stageThreshold > -1.2744859457015991e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 132 1.6374010592699051e-02</internalNodes>
<leafValues >
-3.7089619040489197e-01 5.0737190246582031e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 133 9.4187058508396149e-02</internalNodes>
<leafValues >
-3.1576469540596008e-01 4.0862488746643066e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 134 1.1773589998483658e-02</internalNodes>
<leafValues >
-3.5064500570297241e-01 3.1217798590660095e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 135 1.0922340303659439e-01</internalNodes>
<leafValues >
-1.2247060239315033e-01 2.5683128833770752e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 136 -6.6653150133788586e-03</internalNodes>
<leafValues >
2.3083719611167908e-01 -4.8135739564895630e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 137 -4.5095751993358135e-03</internalNodes>
<leafValues >
1.6601459681987762e-01 -1.2917369604110718e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 138 -1.1136589571833611e-02</internalNodes>
<leafValues >
3.8687920570373535e-01 -2.2618110477924347e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 139 -1.5101970732212067e-01</internalNodes>
<leafValues >
7.8407418727874756e-01 -5.6705389171838760e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 140 3.5842441022396088e-02</internalNodes>
<leafValues >
-3.3353409171104431e-01 2.6884201169013977e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 141 6.0237798839807510e-02</internalNodes>
<leafValues >
6.6777043044567108e-02 -5.8397102355957031e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 142 6.8902626633644104e-02</internalNodes>
<leafValues >
-3.2930138707160950e-01 2.3172050714492798e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 143 -1.1977110058069229e-01</internalNodes>
<leafValues >
7.2716677188873291e-01 -1.0525380074977875e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 144 1.8936740234494209e-02</internalNodes>
<leafValues >
-1.3431450724601746e-01 5.6203877925872803e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 145 8.3808198571205139e-02</internalNodes>
<leafValues >
-4.9557849764823914e-02 1.0450640320777893e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 146 3.3902268856763840e-02</internalNodes>
<leafValues >
9.9094279110431671e-02 -7.6239812374114990e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 147 -8.1007126718759537e-03</internalNodes>
<leafValues >
-4.3555849790573120e-01 2.2304659709334373e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 148 2.4974169209599495e-03</internalNodes>
<leafValues >
9.3714617192745209e-02 -6.8376600742340088e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 149 1.0426550172269344e-02</internalNodes>
<leafValues >
-1.1307760328054428e-01 4.3951630592346191e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 150 -2.4919810239225626e-03</internalNodes>
<leafValues >
-4.9109318852424622e-01 1.2399309873580933e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 151 -4.4614528305828571e-03</internalNodes>
<leafValues >
3.4285509586334229e-01 -1.3288980722427368e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 152 -6.9255861453711987e-03</internalNodes>
<leafValues >
4.0674179792404175e-01 -1.4747169613838196e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 153 1.4747819863259792e-02</internalNodes>
<leafValues >
-1.7921010032296181e-02 1.5927059948444366e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 154 9.8200701177120209e-03</internalNodes>
<leafValues >
8.6944580078125000e-02 -6.7220121622085571e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 29</maxWeakCount>
<stageThreshold > -1.3562519550323486e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 155 3.0345980077981949e-02</internalNodes>
<leafValues >
-5.6813991069793701e-01 2.7571758627891541e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 156 -4.5385681092739105e-02</internalNodes>
<leafValues >
-5.6568390130996704e-01 4.2446270585060120e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 157 -2.4006670713424683e-01</internalNodes>
<leafValues >
3.9162129163742065e-01 -3.0378338694572449e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 158 -1.0817600414156914e-03</internalNodes>
<leafValues >
-7.0329940319061279e-01 1.1626099795103073e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 159 -1.6060429625213146e-03</internalNodes>
<leafValues >
2.2388499975204468e-01 -4.8557040095329285e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 160 -1.0570240020751953e-01</internalNodes>
<leafValues >
-7.4889171123504639e-01 2.8992230072617531e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 161 -2.3500300012528896e-03</internalNodes>
<leafValues >
2.3428779840469360e-01 -4.2647179961204529e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 162 -6.1817590147256851e-02</internalNodes>
<leafValues >
-8.9189022779464722e-01 -1.0216370224952698e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 163 5.4469848982989788e-03</internalNodes>
<leafValues >
-2.6281470060348511e-01 3.1677961349487305e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 164 -6.7602698691189289e-03</internalNodes>
<leafValues >
-7.9144752025604248e-01 1.2072199955582619e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 165 7.8887082054279745e-05</internalNodes>
<leafValues >
-4.4443818926811218e-01 1.9887650012969971e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 166 6.4817398786544800e-02</internalNodes>
<leafValues >
-2.3440040647983551e-01 2.8372839093208313e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 167 2.9690501093864441e-01</internalNodes>
<leafValues >
-1.1379630118608475e-01 8.4734469652175903e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 168 -1.2669449672102928e-02</internalNodes>
<leafValues >
-5.3791618347167969e-01 5.0364010035991669e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 169 3.2963419798761606e-03</internalNodes>
<leafValues >
9.5009326934814453e-02 -6.9295811653137207e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 170 8.1940039992332458e-02</internalNodes>
<leafValues >
6.4861620776355267e-03 -4.8242160677909851e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 171 4.5874840579926968e-03</internalNodes>
<leafValues >
7.4269242584705353e-02 -8.5056728124618530e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 172 1.3228190131485462e-02</internalNodes>
<leafValues >
-1.8141390383243561e-01 5.5488282442092896e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 173 8.3280639955773950e-05</internalNodes>
<leafValues >
-3.5342589020729065e-01 1.6182580590248108e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 174 9.3232236802577972e-02</internalNodes>
<leafValues >
3.6166220903396606e-02 -3.9560291171073914e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 175 -1.7989000305533409e-02</internalNodes>
<leafValues >
1.8585060536861420e-01 -2.9997050762176514e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 176 8.5582181811332703e-02</internalNodes>
<leafValues >
-2.3212260566651821e-03 -7.5706237554550171e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 177 1.4874819666147232e-02</internalNodes>
<leafValues >
-2.1825970709323883e-01 2.7366569638252258e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 178 2.0184369757771492e-02</internalNodes>
<leafValues >
3.5116590559482574e-02 -4.5619380474090576e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 179 1.4273890294134617e-02</internalNodes>
<leafValues >
-1.2478730082511902e-01 6.1065578460693359e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 180 2.6945620775222778e-02</internalNodes>
<leafValues >
-5.6217260658740997e-02 4.3960160017013550e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 181 -1.4722250401973724e-02</internalNodes>
<leafValues >
-7.0504772663116455e-01 8.9823968708515167e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 182 -3.9676232263445854e-03</internalNodes>
<leafValues >
-2.0258559286594391e-01 2.4594809859991074e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 183 -6.9255158305168152e-02</internalNodes>
<leafValues >
7.7862018346786499e-01 -8.2329802215099335e-02</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 34</maxWeakCount>
<stageThreshold > -1.4609309434890747e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 184 4.2280860245227814e-02</internalNodes>
<leafValues >
-4.3323940038681030e-01 3.1084230542182922e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 185 3.2466039061546326e-02</internalNodes>
<leafValues >
-2.5457349419593811e-01 2.8453230857849121e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 186 3.9204079657793045e-03</internalNodes>
<leafValues >
-2.4197019636631012e-01 3.8850378990173340e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 187 1.4881529845297337e-02</internalNodes>
<leafValues >
-2.0224849879741669e-01 2.0803029835224152e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 188 -4.8258059541694820e-04</internalNodes>
<leafValues >
2.0644129812717438e-01 -4.6135428547859192e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 189 1.0871110111474991e-01</internalNodes>
<leafValues >
-1.1968149803578854e-02 -8.3505737781524658e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 190 1.1553530202945694e-04</internalNodes>
<leafValues >
-6.2181282043457031e-01 1.2894719839096069e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 191 1.9984820391982794e-03</internalNodes>
<leafValues >
1.2071420252323151e-01 -5.1865231990814209e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 192 -1.9442409393377602e-04</internalNodes>
<leafValues >
1.5316960215568542e-01 -4.6682178974151611e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 193 3.4691508859395981e-02</internalNodes>
<leafValues >
5.2325479686260223e-02 -5.6493771076202393e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 194 1.2708869576454163e-01</internalNodes>
<leafValues >
-1.1623410135507584e-01 6.6390967369079590e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 195 1.8425850570201874e-01</internalNodes>
<leafValues >
-2.9410699009895325e-01 2.7760609984397888e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 196 -1.0079169645905495e-02</internalNodes>
<leafValues >
2.0110170543193817e-01 -3.7747490406036377e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 197 2.3211309686303139e-02</internalNodes>
<leafValues >
-1.5770949423313141e-01 4.1628879308700562e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 198 -8.5837738588452339e-03</internalNodes>
<leafValues >
-6.4297300577163696e-01 9.1064400970935822e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 199 3.0105128884315491e-01</internalNodes>
<leafValues >
1.8554370850324631e-02 -3.6014398932456970e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 200 5.5468631908297539e-03</internalNodes>
<leafValues >
1.1459550261497498e-01 -5.0818997621536255e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 201 -3.2614849042147398e-03</internalNodes>
<leafValues >
-6.5068858861923218e-01 7.1761913597583771e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 202 -2.1482119336724281e-03</internalNodes>
<leafValues >
1.3169400393962860e-01 -3.7837469577789307e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 203 4.2770840227603912e-03</internalNodes>
<leafValues >
4.9258850514888763e-02 -5.8316987752914429e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 204 -2.8884320054203272e-03</internalNodes>
<leafValues >
3.1445708870887756e-01 -1.6602359712123871e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 205 -4.7958120703697205e-02</internalNodes>
<leafValues >
-7.2590202093124390e-01 1.5948530286550522e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 206 2.6324709877371788e-02</internalNodes>
<leafValues >
7.4111200869083405e-02 -6.6733390092849731e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 207 1.3688339851796627e-02</internalNodes>
<leafValues >
4.7244258224964142e-02 -3.2059279084205627e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 208 1.5577600337564945e-02</internalNodes>
<leafValues >
-9.6644677221775055e-02 5.0794398784637451e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 209 -8.4227044135332108e-03</internalNodes>
<leafValues >
-9.9238747358322144e-01 2.0270830020308495e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 210 3.8861939683556557e-03</internalNodes>
<leafValues >
7.3856048285961151e-02 -6.7188322544097900e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 211 -3.3598121255636215e-02</internalNodes>
<leafValues >
-7.3445242643356323e-01 5.7080879807472229e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 212 1.7251629382371902e-02</internalNodes>
<leafValues >
-1.3607659935951233e-01 4.2951139807701111e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 213 -3.1715810298919678e-02</internalNodes>
<leafValues >
-7.4400889873504639e-01 3.3651608973741531e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 214 1.0187040083110332e-02</internalNodes>
<leafValues >
-1.6512380540370941e-01 3.5162070393562317e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 215 3.7060850299894810e-03</internalNodes>
<leafValues >
6.8452596664428711e-02 -1.8737269937992096e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 216 -9.5564024522900581e-03</internalNodes>
<leafValues >
-5.8053100109100342e-01 8.2600042223930359e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 217 -1.4073489606380463e-01</internalNodes>
<leafValues >
-1. -6.1561721377074718e-03</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 43</maxWeakCount>
<stageThreshold > -1.4843599796295166e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 218 8.2872863858938217e-03</internalNodes>
<leafValues >
-3.3240118622779846e-01 4.0866941213607788e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 219 -5.3943969309329987e-02</internalNodes>
<leafValues >
2.7990311384201050e-01 -3.5782578587532043e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 220 -1.1539819650352001e-02</internalNodes>
<leafValues >
2.1358589828014374e-01 -4.5100399851799011e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 221 -1.5745559707283974e-02</internalNodes>
<leafValues >
2.1471889317035675e-01 -9.9175170063972473e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 222 -1.3527829432860017e-03</internalNodes>
<leafValues >
1.5119549632072449e-01 -5.2674210071563721e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 223 -1.1468210257589817e-02</internalNodes>
<leafValues >
1.3523469865322113e-01 -3.7286050617694855e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 224 8.5535906255245209e-03</internalNodes>
<leafValues >
-2.5730869174003601e-01 2.4693550169467926e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 225 5.6266319006681442e-02</internalNodes>
<leafValues >
-2.1571849286556244e-01 1.8734970688819885e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 226 2.0349300466477871e-03</internalNodes>
<leafValues >
8.9395299553871155e-02 -6.2484967708587646e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 227 -1.0920839849859476e-03</internalNodes>
<leafValues >
-3.2366481423377991e-01 6.9054901599884033e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 228 -5.1597058773040771e-02</internalNodes>
<leafValues >
6.1383968591690063e-01 -9.5396347343921661e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 229 1.7433969303965569e-02</internalNodes>
<leafValues >
-2.5729641318321228e-01 2.5275719165802002e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 230 7.6819643378257751e-02</internalNodes>
<leafValues >
8.7492428719997406e-02 -6.7382502555847168e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 231 8.0648958683013916e-02</internalNodes>
<leafValues >
-5.7000648230314255e-02 4.2771929502487183e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 232 7.0360638201236725e-03</internalNodes>
<leafValues >
-4.2870849370956421e-01 1.4574399590492249e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 233 4.9487157957628369e-04</internalNodes>
<leafValues >
-4.4867759943008423e-01 8.7952293455600739e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 234 -2.0319919567555189e-03</internalNodes>
<leafValues >
-6.9378471374511719e-01 7.9090960323810577e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 235 1.5986919403076172e-02</internalNodes>
<leafValues >
-1.8177279829978943e-01 3.3544349670410156e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 236 1.0031439887825400e-04</internalNodes>
<leafValues >
-2.8036159276962280e-01 1.8939669430255890e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 237 -2.0664870738983154e-01</internalNodes>
<leafValues >
-7.0004421472549438e-01 6.2915571033954620e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 238 1.0939550120383501e-03</internalNodes>
<leafValues >
-5.6122779846191406e-01 7.9117156565189362e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 239 1.0714650154113770e-02</internalNodes>
<leafValues >
3.6672711372375488e-02 -4.8171210289001465e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 240 1.2993469834327698e-02</internalNodes>
<leafValues >
-1.3089600205421448e-01 3.2844379544258118e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 241 5.4268362000584602e-03</internalNodes>
<leafValues >
4.6886149793863297e-02 -5.8115488290786743e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 242 1.0718739591538906e-02</internalNodes>
<leafValues >
5.9297699481248856e-02 -6.6856807470321655e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 243 -3.1285220757126808e-03</internalNodes>
<leafValues >
-3.5857740044593811e-01 2.8134709224104881e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 244 5.2357040112838149e-04</internalNodes>
<leafValues >
-3.4198528528213501e-01 1.2199939787387848e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 245 1.0644399560987949e-02</internalNodes>
<leafValues >
3.9803087711334229e-03 -6.9705927371978760e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 246 1.5901770442724228e-02</internalNodes>
<leafValues >
-7.6809287071228027e-02 5.2953928709030151e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 247 -1.0395360179245472e-02</internalNodes>
<leafValues >
-6.4491081237792969e-01 1.0781600140035152e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 248 3.7131321150809526e-03</internalNodes>
<leafValues >
6.6979996860027313e-02 -6.2111258506774902e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 249 2.3174570873379707e-02</internalNodes>
<leafValues >
1.6732679679989815e-02 -4.5888119935989380e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 250 1.1146579869091511e-02</internalNodes>
<leafValues >
-1.1638499796390533e-01 4.3002909421920776e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 251 1.2715480290353298e-02</internalNodes>
<leafValues >
1.6517929732799530e-02 -6.6795057058334351e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 252 -1.2653400190174580e-02</internalNodes>
<leafValues >
1.1365109682083130e-01 -3.7035998702049255e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 253 -7.1139880456030369e-03</internalNodes>
<leafValues >
1.7468209564685822e-01 -1.2769439816474915e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 254 -1.3703290373086929e-02</internalNodes>
<leafValues >
4.2330458760261536e-01 -9.5448397099971771e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 255 7.5888428837060928e-03</internalNodes>
<leafValues >
-8.7192570790648460e-03 3.0307659506797791e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 256 -5.7711452245712280e-04</internalNodes>
<leafValues >
-5.0375598669052124e-01 9.0188682079315186e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 257 -6.1391671188175678e-03</internalNodes>
<leafValues >
-6.0663592815399170e-01 4.6589769423007965e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 258 9.4300412456505001e-05</internalNodes>
<leafValues >
-2.6559790968894958e-01 1.5030109882354736e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 259 -2.4399429559707642e-01</internalNodes>
<leafValues >
6.4060389995574951e-01 -6.8897739052772522e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 260 -1.2823240458965302e-01</internalNodes>
<leafValues >
2.1190899610519409e-01 -2.7341139316558838e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 42</maxWeakCount>
<stageThreshold > -1.4225620031356812e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 261 -9.8697589710354805e-03</internalNodes>
<leafValues >
4.8807978630065918e-01 -2.6589471101760864e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 262 3.3131919801235199e-02</internalNodes>
<leafValues >
3.2597500830888748e-02 -6.3295251131057739e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 263 1.7511799931526184e-02</internalNodes>
<leafValues >
-3.5473251342773438e-01 2.8011149168014526e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 264 -7.3885500431060791e-02</internalNodes>
<leafValues >
4.7378170490264893e-01 -1.1292530223727226e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 265 1.8212760332971811e-03</internalNodes>
<leafValues >
-4.6179610490798950e-01 1.4266149699687958e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 266 -8.5360601544380188e-02</internalNodes>
<leafValues >
-6.6754668951034546e-01 7.5132578611373901e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 267 -2.7539798617362976e-01</internalNodes>
<leafValues >
3.8147959113121033e-01 -2.3665140569210052e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 268 3.0699970200657845e-02</internalNodes>
<leafValues >
5.1691979169845581e-02 -2.4286730587482452e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 269 -9.6332989633083344e-03</internalNodes>
<leafValues >
3.3072310686111450e-01 -2.0818190276622772e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 270 1.6330240294337273e-02</internalNodes>
<leafValues >
3.4118140320060775e-05 -8.0960237979888916e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 271 8.6133222794160247e-05</internalNodes>
<leafValues >
-3.7730661034584045e-01 1.3947279751300812e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 272 -3.0760519206523895e-02</internalNodes>
<leafValues >
6.7611587047576904e-01 -1.4665770344436169e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 273 6.8717780523002148e-03</internalNodes>
<leafValues >
-1.6677060723304749e-01 3.0840030312538147e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 274 1.7696250230073929e-02</internalNodes>
<leafValues >
3.8468770682811737e-02 -5.9128028154373169e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 275 1.4457659795880318e-02</internalNodes>
<leafValues >
7.1180373430252075e-02 -6.8788748979568481e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 276 4.4003669172525406e-03</internalNodes>
<leafValues >
-1.7107939720153809e-01 3.3334150910377502e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 277 -1.9785019103437662e-03</internalNodes>
<leafValues >
-6.3402158021926880e-01 8.5248172283172607e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 278 -3.5506778955459595e-01</internalNodes>
<leafValues >
6.9163411855697632e-01 -8.7763786315917969e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 279 1.2596770189702511e-02</internalNodes>
<leafValues >
-2.0116379857063293e-01 3.4040948748588562e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 280 -2.3926040157675743e-03</internalNodes>
<leafValues >
-6.2525659799575806e-01 1.1060170084238052e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 281 -8.7672837253194302e-05</internalNodes>
<leafValues >
1.4002850651741028e-01 -3.9103108644485474e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 282 5.4524061270058155e-03</internalNodes>
<leafValues >
-3.1052809953689575e-01 6.3757672905921936e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 283 1.2568219564855099e-02</internalNodes>
<leafValues >
-1.3675519824028015e-01 3.2680550217628479e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 284 3.7843358516693115e-01</internalNodes>
<leafValues >
-3.7364691495895386e-02 3.7789309024810791e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 285 -3.3601790200918913e-03</internalNodes>
<leafValues >
2.9605069756507874e-01 -1.5206739306449890e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 286 -4.3185380101203918e-01</internalNodes>
<leafValues >
-6.8029761314392090e-01 1.2745309621095657e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 287 7.3479618877172470e-03</internalNodes>
<leafValues >
-6.6707527637481689e-01 6.7926846444606781e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 288 7.5943907722830772e-03</internalNodes>
<leafValues >
-1.1112800240516663e-01 2.2462299466133118e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 289 -7.3589297244325280e-05</internalNodes>
<leafValues >
1.3988719880580902e-01 -3.4220328927040100e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 290 -1.0304169700248167e-04</internalNodes>
<leafValues >
8.2018472254276276e-02 -1.0476870089769363e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 291 -5.4624290205538273e-03</internalNodes>
<leafValues >
-5.1264250278472900e-01 9.2095062136650085e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 292 1.9663229584693909e-02</internalNodes>
<leafValues >
6.1935991048812866e-02 -6.1648821830749512e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 293 -1.1055600043619052e-04</internalNodes>
<leafValues >
1.4308770000934601e-01 -2.7447059750556946e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 294 3.8737419527024031e-03</internalNodes>
<leafValues >
-1.0690200328826904e-01 2.0657220482826233e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 295 -4.5131230726838112e-03</internalNodes>
<leafValues >
3.4341660141944885e-01 -1.2317349761724472e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 296 -6.1594668775796890e-02</internalNodes>
<leafValues >
9.3623742461204529e-02 -4.5765519142150879e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 297 1.2142979539930820e-03</internalNodes>
<leafValues >
-1.3058850169181824e-01 3.0691918730735779e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 298 1.3168719410896301e-01</internalNodes>
<leafValues >
1.1348670348525047e-02 -3.6062520742416382e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 299 -9.8962578922510147e-03</internalNodes>
<leafValues >
9.7268536686897278e-02 -4.5470228791236877e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 300 -4.3822340667247772e-03</internalNodes>
<leafValues >
-6.9014567136764526e-01 7.1008093655109406e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 301 -2.4433590471744537e-02</internalNodes>
<leafValues >
5.0112801790237427e-01 -9.8408728837966919e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 302 -8.6958734318614006e-03</internalNodes>
<leafValues >
-1.4006440341472626e-01 3.6845669150352478e-02</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 37</maxWeakCount>
<stageThreshold > -1.3051190376281738e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 303 -1.7152750864624977e-02</internalNodes>
<leafValues >
4.7029718756675720e-01 -2.2067089378833771e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 304 8.3040937781333923e-02</internalNodes>
<leafValues >
5.5113639682531357e-02 -5.5488407611846924e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 305 1.2245059758424759e-01</internalNodes>
<leafValues >
-2.8312590718269348e-01 3.4973090887069702e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 306 7.3496531695127487e-03</internalNodes>
<leafValues >
-1.3282130658626556e-01 4.8876601457595825e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 307 -9.3082878738641739e-03</internalNodes>
<leafValues >
4.5475938916206360e-01 -1.4194749295711517e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 308 1.7290420830249786e-02</internalNodes>
<leafValues >
9.8470740020275116e-02 -6.8155962228775024e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 309 6.8027682602405548e-02</internalNodes>
<leafValues >
1.2287759780883789e-01 -5.8085542917251587e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 310 -2.5710109621286392e-03</internalNodes>
<leafValues >
-2.8932929039001465e-01 9.2327423393726349e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 311 -2.7197790332138538e-03</internalNodes>
<leafValues >
-4.8277780413627625e-01 1.2942260503768921e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 312 3.6168839782476425e-02</internalNodes>
<leafValues >
-3.3225961029529572e-02 2.8994488716125488e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 313 -4.5704417861998081e-03</internalNodes>
<leafValues >
-5.9805792570114136e-01 1.0446850210428238e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 314 3.7568379193544388e-03</internalNodes>
<leafValues >
1.2488850206136703e-01 -5.7084852457046509e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 315 3.0054030939936638e-03</internalNodes>
<leafValues >
-3.2693040370941162e-01 1.9752669334411621e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 316 -1.0322710126638412e-01</internalNodes>
<leafValues >
5.9689277410507202e-01 -9.9626749753952026e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 317 8.5584551095962524e-02</internalNodes>
<leafValues >
-2.3595149815082550e-01 2.7769410610198975e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 318 -1.7628820613026619e-02</internalNodes>
<leafValues >
2.3300230503082275e-01 -3.8094460964202881e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 319 -7.3259319178760052e-03</internalNodes>
<leafValues >
1.5533800423145294e-01 -3.4289830923080444e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 320 1.6643910109996796e-01</internalNodes>
<leafValues >
1.3593060430139303e-04 -6.0628050565719604e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 321 1.3041920028626919e-02</internalNodes>
<leafValues >
1.0876829922199249e-01 -4.7265630960464478e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 322 -1.3597619719803333e-02</internalNodes>
<leafValues >
-5.8280581235885620e-01 7.2698637843132019e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 323 6.8220919929444790e-03</internalNodes>
<leafValues >
-1.4359709620475769e-01 3.4434759616851807e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 324 -1.3025919906795025e-04</internalNodes>
<leafValues >
7.5394742190837860e-02 -6.7537508904933929e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 325 -2.4602119810879230e-03</internalNodes>
<leafValues >
-5.1882988214492798e-01 8.0956049263477325e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 326 -3.2538071274757385e-02</internalNodes>
<leafValues >
-5.8500260114669800e-01 5.7338178157806396e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 327 2.0106420852243900e-03</internalNodes>
<leafValues >
-1.0640989989042282e-01 4.0276700258255005e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 328 -4.6432539820671082e-02</internalNodes>
<leafValues >
-4.2023709416389465e-01 4.2063061147928238e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 329 -1.2824350036680698e-02</internalNodes>
<leafValues >
4.8449409008026123e-01 -9.4362497329711914e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 330 3.4120719879865646e-02</internalNodes>
<leafValues >
2.7428179979324341e-02 -5.6730318069458008e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 331 -4.4012650847434998e-02</internalNodes>
<leafValues >
3.7047350406646729e-01 -1.3064679503440857e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 332 -3.7362610455602407e-03</internalNodes>
<leafValues >
-6.1717242002487183e-01 4.6860579401254654e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 333 -5.2141821943223476e-03</internalNodes>
<leafValues >
-6.5322470664978027e-01 5.3996030241250992e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 334 6.4924731850624084e-03</internalNodes>
<leafValues >
4.4800970703363419e-02 -4.3987420201301575e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 335 -4.2384970001876354e-03</internalNodes>
<leafValues >
-7.1687930822372437e-01 5.4430369287729263e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 336 -3.1804300379008055e-03</internalNodes>
<leafValues >
2.4815900623798370e-01 -8.9008152484893799e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 337 2.9277798603288829e-04</internalNodes>
<leafValues >
-2.1440739929676056e-01 2.0239150524139404e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 338 -1.1838439851999283e-02</internalNodes>
<leafValues >
6.8225288391113281e-01 -5.6109890341758728e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 339 -2.0604960620403290e-02</internalNodes>
<leafValues >
-6.4495718479156494e-01 6.5811157226562500e-02</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 45</maxWeakCount>
<stageThreshold > -1.2928479909896851e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 340 -5.7252319529652596e-03</internalNodes>
<leafValues >
3.4108111262321472e-01 -3.3441230654716492e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 341 1.5814049541950226e-01</internalNodes>
<leafValues >
-2.9555070400238037e-01 2.9280221462249756e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 342 3.5558689851313829e-03</internalNodes>
<leafValues >
-2.8485581278800964e-01 2.4933080375194550e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 343 -3.1524680089205503e-03</internalNodes>
<leafValues >
-4.6672669053077698e-01 7.6127722859382629e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 344 -1.4493550173938274e-02</internalNodes>
<leafValues >
2.5777289271354675e-01 -2.4369129538536072e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 345 -6.8386606872081757e-02</internalNodes>
<leafValues >
5.2669358253479004e-01 8.9219277724623680e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 346 1.0660409461706877e-03</internalNodes>
<leafValues >
-4.9784231185913086e-01 1.1696430295705795e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 347 1.6208799555897713e-02</internalNodes>
<leafValues >
-3.0983239412307739e-01 9.5886580646038055e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 348 2.8249868750572205e-01</internalNodes>
<leafValues >
-7.3715627193450928e-02 6.4200782775878906e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 349 8.6361259222030640e-02</internalNodes>
<leafValues >
4.0710549801588058e-02 -5.0559818744659424e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 350 5.1451180130243301e-02</internalNodes>
<leafValues >
-3.3384099602699280e-01 1.6614030301570892e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 351 -6.9037936627864838e-02</internalNodes>
<leafValues >
-3.1987860798835754e-01 3.4255299717187881e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 352 -5.6569739244878292e-03</internalNodes>
<leafValues >
-6.1266559362411499e-01 8.3148159086704254e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 353 -7.1886749938130379e-03</internalNodes>
<leafValues >
4.2386818677186966e-02 -9.7789242863655090e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 354 -2.6780599728226662e-02</internalNodes>
<leafValues >
1.2735369801521301e-01 -3.4852239489555359e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 355 -6.9346590898931026e-03</internalNodes>
<leafValues >
4.4443860650062561e-02 -2.6666578650474548e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 356 1.2057109922170639e-01</internalNodes>
<leafValues >
9.1515138745307922e-02 -5.5102181434631348e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 357 1.0571300052106380e-02</internalNodes>
<leafValues >
-1.1927139759063721e-01 1.5043540298938751e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 358 -1.4446419663727283e-02</internalNodes>
<leafValues >
3.2619118690490723e-01 -1.3021939992904663e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 359 4.9188970588147640e-03</internalNodes>
<leafValues >
2.4317760020494461e-02 -5.8825939893722534e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 360 -3.8240209687501192e-03</internalNodes>
<leafValues >
-6.5660482645034790e-01 6.3337683677673340e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 361 -1.7404669523239136e-01</internalNodes>
<leafValues >
-5.4772597551345825e-01 6.0019370168447495e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 362 4.5922618359327316e-02</internalNodes>
<leafValues >
5.0438169389963150e-02 -6.9467681646347046e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 363 -3.9035470690578222e-03</internalNodes>
<leafValues >
2.2018410265445709e-01 -1.8376649916172028e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 364 1.7436769558116794e-03</internalNodes>
<leafValues >
6.1212658882141113e-02 -5.7988357543945312e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 365 -9.7301546484231949e-03</internalNodes>
<leafValues >
-5.1599711179733276e-01 4.9021121114492416e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 366 -5.0866428762674332e-02</internalNodes>
<leafValues >
4.3118700385093689e-01 -9.5599338412284851e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 367 1.5334750059992075e-04</internalNodes>
<leafValues >
-8.4842063486576080e-02 5.3982339799404144e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 368 -7.9509448260068893e-03</internalNodes>
<leafValues >
4.7792288661003113e-01 -9.3340940773487091e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 369 -4.4662738218903542e-03</internalNodes>
<leafValues >
-6.6406428813934326e-01 7.0635370910167694e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 370 6.7459428682923317e-03</internalNodes>
<leafValues >
-9.5945097506046295e-02 4.5204031467437744e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 371 -4.8576910048723221e-02</internalNodes>
<leafValues >
-2.5402069091796875e-01 3.5480510443449020e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 372 -8.1895291805267334e-03</internalNodes>
<leafValues >
-6.9631862640380859e-01 5.4189778864383698e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 373 -1.3830559328198433e-04</internalNodes>
<leafValues >
7.7265933156013489e-02 -4.3882951140403748e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 374 -2.9827160760760307e-02</internalNodes>
<leafValues >
5.1934647560119629e-01 -7.4816159904003143e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 375 1.9728230312466621e-02</internalNodes>
<leafValues >
4.6895399689674377e-02 -5.6989020109176636e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 376 1.2107780203223228e-02</internalNodes>
<leafValues >
-1.3739739358425140e-01 3.2666760683059692e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 377 6.9206808693706989e-03</internalNodes>
<leafValues >
4.6539328992366791e-02 -4.9861478805541992e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 378 7.5631309300661087e-03</internalNodes>
<leafValues >
-1.0235120356082916e-01 3.9567971229553223e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 379 -2.3844289779663086e-01</internalNodes>
<leafValues >
-7.1881687641143799e-01 4.9742348492145538e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 380 -9.2327659949660301e-03</internalNodes>
<leafValues >
4.8625311255455017e-01 -7.8327029943466187e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 381 1.2344529852271080e-02</internalNodes>
<leafValues >
-4.5567270368337631e-02 1.6513639688491821e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 382 -1.0889769764617085e-03</internalNodes>
<leafValues >
2.3016020655632019e-01 -1.4696329832077026e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 383 -5.1214238628745079e-03</internalNodes>
<leafValues >
1.7787009477615356e-01 -1.9967870414257050e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 384 2.3381220176815987e-02</internalNodes>
<leafValues >
3.9966959506273270e-02 -7.6583552360534668e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 49</maxWeakCount>
<stageThreshold > -1.3127609491348267e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 385 5.8875479735434055e-03</internalNodes>
<leafValues >
-2.6197949051856995e-01 3.9267268776893616e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 386 -2.0563710480928421e-02</internalNodes>
<leafValues >
2.3240800201892853e-01 -3.6058109253644943e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 387 2.4195060133934021e-02</internalNodes>
<leafValues >
-1.7246599495410919e-01 4.0554100275039673e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 388 2.2053229808807373e-01</internalNodes>
<leafValues >
-2.4937939643859863e-01 2.4980540573596954e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 389 8.1213507801294327e-03</internalNodes>
<leafValues >
9.8432846367359161e-02 -5.0667357444763184e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 390 -1.5637070173397660e-03</internalNodes>
<leafValues >
-4.1526609659194946e-01 1.3340100646018982e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 391 1.2210609856992960e-03</internalNodes>
<leafValues >
-2.5663951039314270e-01 2.1268320083618164e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 392 4.5655488967895508e-02</internalNodes>
<leafValues >
8.5712976753711700e-02 -5.5701047182083130e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 393 -1.7322370782494545e-02</internalNodes>
<leafValues >
1.0083419829607010e-01 -4.3052899837493896e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 394 2.7879169210791588e-02</internalNodes>
<leafValues >
4.4392268173396587e-03 -5.7203328609466553e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 395 -4.7942388802766800e-02</internalNodes>
<leafValues >
4.9971351027488708e-01 -1.0569220036268234e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 396 -9.0003162622451782e-02</internalNodes>
<leafValues >
7.7226841449737549e-01 -3.5037949681282043e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 397 2.1878979168832302e-03</internalNodes>
<leafValues >
-4.3980291485786438e-01 1.0962349921464920e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 398 -1.1160460300743580e-02</internalNodes>
<leafValues >
-6.0748499631881714e-01 2.5118330493569374e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 399 2.3293609265238047e-03</internalNodes>
<leafValues >
7.4755467474460602e-02 -5.6645327806472778e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 400 -3.2051369547843933e-02</internalNodes>
<leafValues >
1.3710969686508179e-01 -1.4014610648155212e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 401 -1.0117290169000626e-01</internalNodes>
<leafValues >
6.2204962968826294e-01 -6.4412176609039307e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 402 4.2040869593620300e-02</internalNodes>
<leafValues >
-8.5930466651916504e-02 4.9315661191940308e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 403 2.5582410395145416e-02</internalNodes>
<leafValues >
6.1051581054925919e-02 -6.5449321269989014e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 404 1.0514019988477230e-02</internalNodes>
<leafValues >
-1.0234809666872025e-01 2.6112779974937439e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 405 1.1631770030362532e-04</internalNodes>
<leafValues >
-3.1768348813056946e-01 1.2542060017585754e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 406 -4.4300020672380924e-03</internalNodes>
<leafValues >
1.9109399616718292e-01 -5.2662618458271027e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 407 2.0806640386581421e-03</internalNodes>
<leafValues >
-1.4428110420703888e-01 3.0112838745117188e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 408 5.4104570299386978e-03</internalNodes>
<leafValues >
-5.4554589092731476e-02 3.5240170359611511e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 409 1.0801830329000950e-02</internalNodes>
<leafValues >
5.5018458515405655e-02 -7.4443417787551880e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 410 4.2296931147575378e-02</internalNodes>
<leafValues >
6.1844110488891602e-02 -3.3144399523735046e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 411 5.9895617887377739e-03</internalNodes>
<leafValues >
6.4745798707008362e-02 -5.6030327081680298e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 412 -9.4227874651551247e-03</internalNodes>
<leafValues >
-3.0067789554595947e-01 4.3195281177759171e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 413 -2.0783370360732079e-02</internalNodes>
<leafValues >
3.7524980306625366e-01 -1.0968690365552902e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 414 -5.2015861729159951e-04</internalNodes>
<leafValues >
-1.1337819695472717e-01 3.7144880741834641e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 415 -8.0162001540884376e-04</internalNodes>
<leafValues >
-5.2545320987701416e-01 6.6209748387336731e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 416 -2.5214110501110554e-03</internalNodes>
<leafValues >
-1.5936410427093506e-01 5.1849711686372757e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 417 9.0704779722727835e-05</internalNodes>
<leafValues >
-3.3334940671920776e-01 1.0919860005378723e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 418 -1.8114539561793208e-03</internalNodes>
<leafValues >
1.1214060336351395e-01 -9.0960927307605743e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 419 -1.9519029557704926e-01</internalNodes>
<leafValues >
-7.2080957889556885e-01 5.0182379782199860e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 420 -1.4884449541568756e-02</internalNodes>
<leafValues >
-6.0010558366775513e-01 9.1695934534072876e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 421 -9.3493862077593803e-03</internalNodes>
<leafValues >
4.8005661368370056e-01 -7.6954081654548645e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 422 7.1461386978626251e-02</internalNodes>
<leafValues >
-5.7781968265771866e-02 2.6106640696525574e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 423 5.1590640097856522e-02</internalNodes>
<leafValues >
7.1806840598583221e-02 -4.6015501022338867e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 424 3.0857140664011240e-03</internalNodes>
<leafValues >
-9.2065691947937012e-02 1.1266019940376282e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 425 1.7517179949209094e-03</internalNodes>
<leafValues >
-1.9908079504966736e-01 1.9879740476608276e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 426 6.3493461348116398e-03</internalNodes>
<leafValues >
-1.0544289648532867e-01 4.3338119983673096e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 427 4.2910311371088028e-02</internalNodes>
<leafValues >
5.2926450967788696e-02 -6.6493779420852661e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 428 -2.8933840990066528e-01</internalNodes>
<leafValues >
-5.9245282411575317e-01 5.0023719668388367e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 429 1.9839199259877205e-02</internalNodes>
<leafValues >
4.1037648916244507e-02 -6.7570680379867554e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 430 -2.9357530176639557e-02</internalNodes>
<leafValues >
-6.5960741043090820e-01 4.1811358183622360e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 431 8.8180392980575562e-02</internalNodes>
<leafValues >
6.5817430615425110e-02 -4.4950678944587708e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 432 -1.3282440602779388e-01</internalNodes>
<leafValues >
-2.1098449826240540e-01 3.9650738239288330e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 433 8.0266319855581969e-05</internalNodes>
<leafValues >
-2.5888821482658386e-01 1.1488880217075348e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 55</maxWeakCount>
<stageThreshold > -1.3777979612350464e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 434 6.5426998771727085e-03</internalNodes>
<leafValues >
-2.2366699576377869e-01 4.7720021009445190e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 435 -2.2333480592351407e-04</internalNodes>
<leafValues >
1.0184849798679352e-01 -1.8614460527896881e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 436 -6.0191731899976730e-03</internalNodes>
<leafValues >
3.1382268667221069e-01 -2.3328569531440735e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 437 1.7179940640926361e-01</internalNodes>
<leafValues >
-2.9191988706588745e-01 2.1794080734252930e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 438 1.6310229897499084e-02</internalNodes>
<leafValues >
-1.4051440358161926e-01 3.2606941461563110e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 439 -1.5107460319995880e-01</internalNodes>
<leafValues >
6.4690059423446655e-01 -5.2486609667539597e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 440 4.6439900994300842e-02</internalNodes>
<leafValues >
-2.4340909719467163e-01 2.6854258775711060e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 441 -4.3716500513255596e-03</internalNodes>
<leafValues >
-2.9228550195693970e-01 9.8407112061977386e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 442 1.6864160075783730e-02</internalNodes>
<leafValues >
-2.8363880515098572e-01 1.9571739435195923e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 443 2.5575649924576283e-03</internalNodes>
<leafValues >
4.4347479939460754e-02 -1.3447460532188416e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 444 2.0957190543413162e-02</internalNodes>
<leafValues >
-1.8374939262866974e-01 2.6384368538856506e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 445 4.1607948951423168e-03</internalNodes>
<leafValues >
4.9291279166936874e-02 -6.1921811103820801e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 446 4.1489768773317337e-03</internalNodes>
<leafValues >
4.1641891002655029e-02 -7.3988562822341919e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 447 2.1313559263944626e-02</internalNodes>
<leafValues >
2.3694250732660294e-02 -5.6835669279098511e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 448 1.2101300060749054e-02</internalNodes>
<leafValues >
-9.5187656581401825e-02 4.6901950240135193e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 449 1.8083410104736686e-03</internalNodes>
<leafValues >
4.7500770539045334e-02 -3.0990800261497498e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 450 -1.0990530252456665e-02</internalNodes>
<leafValues >
6.7560458183288574e-01 -6.0268498957157135e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 451 -8.9888361981138587e-04</internalNodes>
<leafValues >
1.6142509877681732e-01 -8.0034710466861725e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 452 8.5803032561670989e-05</internalNodes>
<leafValues >
-2.5957980751991272e-01 1.5043449401855469e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 453 -1.0529270395636559e-02</internalNodes>
<leafValues >
4.8798549175262451e-01 -1.0572060197591782e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 454 -2.5140570942312479e-03</internalNodes>
<leafValues >
-5.9965860843658447e-01 7.1445137262344360e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 455 -2.0928360521793365e-02</internalNodes>
<leafValues >
-6.3737767934799194e-01 1.1195439845323563e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 456 8.4567293524742126e-03</internalNodes>
<leafValues >
1.0487599670886993e-01 -3.3027571439743042e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 457 1.1649870127439499e-01</internalNodes>
<leafValues >
4.9215629696846008e-02 -7.1875381469726562e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 458 1.0911310091614723e-02</internalNodes>
<leafValues >
4.0617398917675018e-02 -7.1910649538040161e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 459 -2.4141639471054077e-02</internalNodes>
<leafValues >
4.6759098768234253e-01 -3.2959330826997757e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 460 1.2029770296066999e-03</internalNodes>
<leafValues >
-3.1624960899353027e-01 1.1505530029535294e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 461 9.8068173974752426e-03</internalNodes>
<leafValues >
-3.6025181412696838e-02 1.7123579978942871e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 462 6.7418841645121574e-03</internalNodes>
<leafValues >
6.2854416668415070e-02 -5.5376541614532471e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 463 -1.3345720246434212e-02</internalNodes>
<leafValues >
-7.5741612911224365e-01 9.3524847179651260e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 464 8.8471651077270508e-02</internalNodes>
<leafValues >
5.5774558335542679e-02 -5.2644717693328857e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 465 -1.4308050274848938e-02</internalNodes>
<leafValues >
-5.0163388252258301e-01 6.1552900820970535e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 466 2.3234330583363771e-03</internalNodes>
<leafValues >
-8.7273299694061279e-02 3.7597200274467468e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 467 -6.6605149768292904e-03</internalNodes>
<leafValues >
-5.6011527776718140e-01 4.5979429036378860e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 468 -2.3684150073677301e-04</internalNodes>
<leafValues >
9.2453077435493469e-02 -3.4188869595527649e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 469 5.2499719895422459e-03</internalNodes>
<leafValues >
-1.0243079811334610e-01 3.8211381435394287e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 470 9.6710777143016458e-05</internalNodes>
<leafValues >
-1.4891329407691956e-01 2.4878869950771332e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 471 -3.1435599084943533e-03</internalNodes>
<leafValues >
2.0501570403575897e-01 -5.9435389935970306e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 472 -1.9189229351468384e-04</internalNodes>
<leafValues >
1.2612619996070862e-01 -3.2496848702430725e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 473 -4.6893218532204628e-03</internalNodes>
<leafValues >
3.2404568791389465e-01 -3.2848190516233444e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 474 3.0783370602875948e-03</internalNodes>
<leafValues >
5.5750191211700439e-02 -5.7443851232528687e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 475 1.3539710082113743e-02</internalNodes>
<leafValues >
-3.2638911157846451e-02 4.8875731229782104e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 476 8.2393882621545345e-05</internalNodes>
<leafValues >
-2.2491760551929474e-01 1.5178939700126648e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 477 -9.3342671170830727e-03</internalNodes>
<leafValues >
-5.7278221845626831e-01 4.6149488538503647e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 478 4.5541571453213692e-03</internalNodes>
<leafValues >
-2.0548130571842194e-01 1.4704200625419617e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 479 2.4691719561815262e-02</internalNodes>
<leafValues >
2.0886249840259552e-02 -5.6028658151626587e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 480 9.7412186732981354e-05</internalNodes>
<leafValues >
-1.5648730099201202e-01 1.9009509682655334e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 481 5.7823117822408676e-03</internalNodes>
<leafValues >
-1.2173660099506378e-01 2.1024130284786224e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 482 -6.4938321709632874e-02</internalNodes>
<leafValues >
5.5764448642730713e-01 -6.1514221131801605e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 483 -5.9424177743494511e-03</internalNodes>
<leafValues >
-4.4680491089820862e-01 5.5648550391197205e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 484 -5.0992597825825214e-03</internalNodes>
<leafValues >
1.9794790446758270e-01 -1.8055149912834167e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 485 -1.5280229970812798e-02</internalNodes>
<leafValues >
-8.6270570755004883e-02 3.5552538931369781e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 486 -7.4432790279388428e-03</internalNodes>
<leafValues >
1.7408570647239685e-01 -1.8400490283966064e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 487 5.1331128925085068e-03</internalNodes>
<leafValues >
-8.8491149246692657e-02 3.1532418727874756e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 488 2.4648790713399649e-03</internalNodes>
<leafValues >
-8.3607397973537445e-02 3.5939309000968933e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 57</maxWeakCount>
<stageThreshold > -1.2673230171203613e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 489 3.2584890723228455e-02</internalNodes>
<leafValues >
-2.9446709156036377e-01 3.8783320784568787e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 490 -1.5954829752445221e-02</internalNodes>
<leafValues >
-8.7387222051620483e-01 1.3140209950506687e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 491 6.5294029191136360e-03</internalNodes>
<leafValues >
-1.8746000528335571e-01 3.4920379519462585e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 492 -6.9139063358306885e-02</internalNodes>
<leafValues >
-3.2066041231155396e-01 2.1070230752229691e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 493 -2.7401080355048180e-02</internalNodes>
<leafValues >
1.6137300431728363e-01 -3.3988159894943237e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 494 5.4834091663360596e-01</internalNodes>
<leafValues >
-1.1290470138192177e-02 -1.0005040168762207e+00</leafValues> </_>
<_ >
<internalNodes >
0 -1 495 4.6463169157505035e-02</internalNodes>
<leafValues >
-7.0668822526931763e-01 5.8523610234260559e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 496 3.5692781209945679e-02</internalNodes>
<leafValues >
-1.2722860090434551e-02 5.1669907569885254e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 497 -8.8253971189260483e-03</internalNodes>
<leafValues >
3.5113370418548584e-01 -1.2264049798250198e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 498 -2.4928439408540726e-02</internalNodes>
<leafValues >
-4.1226190328598022e-01 8.2819983363151550e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 499 8.3438487490639091e-04</internalNodes>
<leafValues >
-3.1004768610000610e-01 1.2824219465255737e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 500 4.3677380308508873e-03</internalNodes>
<leafValues >
8.7895832955837250e-02 -5.5109828710556030e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 501 -6.0594570823013783e-03</internalNodes>
<leafValues >
2.3694829642772675e-01 -1.6963149607181549e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 502 -1.3386299833655357e-02</internalNodes>
<leafValues >
-2.9353159666061401e-01 3.3642090857028961e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 503 5.5047020316123962e-02</internalNodes>
<leafValues >
9.9271617829799652e-02 -4.0973669290542603e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 504 1.7345769330859184e-02</internalNodes>
<leafValues >
-1.0950370132923126e-01 4.2251870036125183e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 505 5.1694452762603760e-01</internalNodes>
<leafValues >
-5.7410959154367447e-02 6.4137631654739380e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 506 6.5628431737422943e-02</internalNodes>
<leafValues >
3.3641148358583450e-02 -6.0003411769866943e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 507 1.0161089897155762e-01</internalNodes>
<leafValues >
-2.5070580840110779e-01 1.8186099827289581e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 508 2.9830370098352432e-02</internalNodes>
<leafValues >
-1.1608160287141800e-01 3.5246831178665161e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 509 -6.6538550890982151e-04</internalNodes>
<leafValues >
-5.6480127573013306e-01 6.4513862133026123e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 510 8.9011844247579575e-03</internalNodes>
<leafValues >
3.7113070487976074e-02 -6.2943869829177856e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 511 -5.7988148182630539e-03</internalNodes>
<leafValues >
3.3002421259880066e-01 -1.1569269746541977e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 512 1.8202450126409531e-02</internalNodes>
<leafValues >
2.2297389805316925e-02 -6.8679827451705933e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 513 -6.3430098816752434e-03</internalNodes>
<leafValues >
-5.9504687786102295e-01 5.3902018815279007e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 514 1.0256610065698624e-01</internalNodes>
<leafValues >
1.1425909586250782e-02 -3.4088680148124695e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 515 -2.1729130297899246e-02</internalNodes>
<leafValues >
1.0024060308933258e-01 -3.6016431450843811e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 516 -4.0402188897132874e-02</internalNodes>
<leafValues >
-7.9971337318420410e-01 1.0374830104410648e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 517 -1.1156830005347729e-02</internalNodes>
<leafValues >
4.1818261146545410e-01 -1.0622619837522507e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 518 1.0242810240015388e-03</internalNodes>
<leafValues >
-7.2071209549903870e-02 9.9886089563369751e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 519 9.5549278194084764e-04</internalNodes>
<leafValues >
-1.6656149923801422e-01 2.7860009670257568e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 520 1.3702700380235910e-04</internalNodes>
<leafValues >
-3.1575959920883179e-01 1.1808790266513824e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 521 -1.9174149632453918e-01</internalNodes>
<leafValues >
5.2235382795333862e-01 -7.6672300696372986e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 522 2.5123620871454477e-03</internalNodes>
<leafValues >
-8.5517987608909607e-02 2.7882871031761169e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 523 3.6384440027177334e-03</internalNodes>
<leafValues >
-1.0173840075731277e-01 3.6575859785079956e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 524 -9.1068800538778305e-03</internalNodes>
<leafValues >
-1.9999110698699951e-01 3.5431660711765289e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 525 -2.5456059724092484e-02</internalNodes>
<leafValues >
-6.6976618766784668e-01 5.1672291010618210e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 526 -2.5856729596853256e-02</internalNodes>
<leafValues >
-7.3498648405075073e-01 2.7689380571246147e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 527 8.5871294140815735e-03</internalNodes>
<leafValues >
-1.1443380266427994e-01 2.7319890260696411e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 528 3.5716209094971418e-03</internalNodes>
<leafValues >
6.0280900448560715e-02 -2.6631888747215271e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 529 1.0332760401070118e-02</internalNodes>
<leafValues >
3.8581959903240204e-02 -6.7532962560653687e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 530 -8.3224009722471237e-03</internalNodes>
<leafValues >
2.5268268585205078e-01 -6.8770729005336761e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 531 -1.8182119820266962e-03</internalNodes>
<leafValues >
-3.1761169433593750e-01 9.2666782438755035e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 532 -1.3169780373573303e-02</internalNodes>
<leafValues >
-5.3651332855224609e-01 2.8106879442930222e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 533 2.0408600568771362e-02</internalNodes>
<leafValues >
-6.0603220015764236e-02 5.0572431087493896e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 534 1.7321230471134186e-01</internalNodes>
<leafValues >
2.1015009842813015e-03 3.2260191440582275e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 535 -5.8910921216011047e-02</internalNodes>
<leafValues >
1.4044930040836334e-01 -2.0362600684165955e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 536 4.9123559147119522e-03</internalNodes>
<leafValues >
7.1367353200912476e-02 -5.0733560323715210e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 537 -1.3819620653521270e-04</internalNodes>
<leafValues >
7.6624020934104919e-02 -3.4903231263160706e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 538 1.2017219560220838e-03</internalNodes>
<leafValues >
-5.1169282197952271e-01 5.4793931543827057e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 539 -5.4135429672896862e-03</internalNodes>
<leafValues >
-5.0181478261947632e-01 5.0226181745529175e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 540 -3.3707648515701294e-02</internalNodes>
<leafValues >
-8.5764700174331665e-01 4.7642397694289684e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 541 1.2718940153717995e-02</internalNodes>
<leafValues >
-1.0830610245466232e-01 2.8867751359939575e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 542 -2.0672269165515900e-02</internalNodes>
<leafValues >
-3.0906811356544495e-01 2.1581029519438744e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 543 1.5933969989418983e-02</internalNodes>
<leafValues >
-8.3755359053611755e-02 4.1743949055671692e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 544 9.3405526131391525e-03</internalNodes>
<leafValues >
4.7591928392648697e-02 -6.5143817663192749e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 545 1.3016579672694206e-02</internalNodes>
<leafValues >
5.3528260439634323e-02 -4.8644289374351501e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 61</maxWeakCount>
<stageThreshold > -1.3531359434127808e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 546 5.0423052161931992e-03</internalNodes>
<leafValues >
-2.2111539542675018e-01 4.3673288822174072e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 547 3.3594230189919472e-03</internalNodes>
<leafValues >
-1.7003799974918365e-01 1.2387859821319580e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 548 -2.2854709997773170e-02</internalNodes>
<leafValues >
3.0707350373268127e-01 -1.9186529517173767e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 549 4.3850108049809933e-03</internalNodes>
<leafValues >
3.2038759440183640e-02 -1.4620819687843323e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 550 -5.3011639975011349e-03</internalNodes>
<leafValues >
1.6375949978828430e-01 -2.8174880146980286e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 551 4.9680870026350021e-02</internalNodes>
<leafValues >
4.2250480502843857e-02 -6.0391640663146973e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 552 -5.1453109830617905e-02</internalNodes>
<leafValues >
6.5720152854919434e-01 -7.0812806487083435e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 553 2.7113489806652069e-02</internalNodes>
<leafValues >
2.9805190861225128e-02 -4.0825900435447693e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 554 2.3578230291604996e-02</internalNodes>
<leafValues >
-3.0918011069297791e-01 2.1382910013198853e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 555 2.9583559371531010e-03</internalNodes>
<leafValues >
2.3970389738678932e-02 -1.6768220067024231e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 556 -2.8374159592203796e-04</internalNodes>
<leafValues >
1.9550369679927826e-01 -2.6317828893661499e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 557 3.8295589387416840e-02</internalNodes>
<leafValues >
-8.1490896642208099e-02 4.1922101378440857e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 558 -1.0575760155916214e-02</internalNodes>
<leafValues >
-5.5699461698532104e-01 6.0772120952606201e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 559 -1.3283690204843879e-03</internalNodes>
<leafValues >
9.2958763241767883e-02 -3.3554950356483459e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 560 1.8217159667983651e-03</internalNodes>
<leafValues >
-9.9800482392311096e-02 3.8015770912170410e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 561 -1.8067359924316406e-03</internalNodes>
<leafValues >
-5.1108711957931519e-01 6.8366326391696930e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 562 6.6835001111030579e-02</internalNodes>
<leafValues >
3.1457249075174332e-02 -6.9415211677551270e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 563 -1.3109239749610424e-02</internalNodes>
<leafValues >
6.0284411907196045e-01 -8.0423787236213684e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 564 -1.9930349662899971e-03</internalNodes>
<leafValues >
-4.1979709267616272e-01 8.9367941021919250e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 565 -1.0855719447135925e-03</internalNodes>
<leafValues >
-2.4703420698642731e-01 5.2764680236577988e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 566 -2.0320110488682985e-03</internalNodes>
<leafValues >
-6.1820042133331299e-01 5.1938790827989578e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 567 1.6026819124817848e-02</internalNodes>
<leafValues >
-8.5486106574535370e-02 5.8234047889709473e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 568 1.7896020784974098e-02</internalNodes>
<leafValues >
6.8894177675247192e-02 -5.8082962036132812e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 569 -2.4853560607880354e-03</internalNodes>
<leafValues >
2.0646420121192932e-01 -6.0466051101684570e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 570 -1.8073250539600849e-03</internalNodes>
<leafValues >
2.5038561224937439e-01 -1.3862800598144531e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 571 -1.1800680309534073e-02</internalNodes>
<leafValues >
-5.5517327785491943e-01 2.3907609283924103e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 572 5.3180782124400139e-03</internalNodes>
<leafValues >
-1.0365380346775055e-01 3.5622540116310120e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 573 -1.9885929941665381e-04</internalNodes>
<leafValues >
7.9137459397315979e-02 -7.1248553693294525e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 574 1.2722889892756939e-02</internalNodes>
<leafValues >
3.6043450236320496e-02 -7.7585661411285400e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 575 5.4894611239433289e-03</internalNodes>
<leafValues >
-1.1198099702596664e-01 2.9539060592651367e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 576 3.1117599457502365e-02</internalNodes>
<leafValues >
6.8027697503566742e-02 -4.7621628642082214e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 577 -1.0922919958829880e-02</internalNodes>
<leafValues >
3.7011030316352844e-01 -1.5059700608253479e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 578 -1.7167469486594200e-03</internalNodes>
<leafValues >
2.7644971013069153e-01 -1.1304590106010437e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 579 -1.3501050416380167e-03</internalNodes>
<leafValues >
-3.5303080081939697e-01 9.9187247455120087e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 580 1.9909780472517014e-02</internalNodes>
<leafValues >
6.5169408917427063e-02 -4.9353629350662231e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 581 2.3044180124998093e-02</internalNodes>
<leafValues >
1.7247360199689865e-02 -3.9788180589675903e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 582 9.6177039667963982e-03</internalNodes>
<leafValues >
-1.1394459754228592e-01 3.1357648968696594e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 583 -7.6275239698588848e-03</internalNodes>
<leafValues >
-9.2318731546401978e-01 7.8877164050936699e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 584 8.7190303020179272e-05</internalNodes>
<leafValues >
-3.0970078706741333e-01 9.5611982047557831e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 585 -1.1889990419149399e-02</internalNodes>
<leafValues >
4.7901371121406555e-01 -3.5577189177274704e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 586 8.4557365626096725e-03</internalNodes>
<leafValues >
5.2709650248289108e-02 -5.7321697473526001e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 587 1.1996040120720863e-02</internalNodes>
<leafValues >
1.9709009677171707e-02 -6.9532912969589233e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 588 -2.7005810290575027e-02</internalNodes>
<leafValues >
5.9652292728424072e-01 -5.1673818379640579e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 589 1.8543410114943981e-03</internalNodes>
<leafValues >
7.2791919112205505e-02 -5.0846791267395020e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 590 7.5675587868317962e-04</internalNodes>
<leafValues >
-3.8867241144180298e-01 6.5925061702728271e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 591 -3.8905180990695953e-02</internalNodes>
<leafValues >
-6.0740387439727783e-01 3.5101689863950014e-03</leafValues> </_>
<_ >
<internalNodes >
0 -1 592 -5.7714940048754215e-03</internalNodes>
<leafValues >
1.7274090647697449e-01 -1.7644210159778595e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 593 -9.1350553557276726e-03</internalNodes>
<leafValues >
-2.8621628880500793e-01 3.0258299782872200e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 594 4.5439298264682293e-03</internalNodes>
<leafValues >
-8.5076972842216492e-02 4.1360539197921753e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 595 1.5785360708832741e-02</internalNodes>
<leafValues >
-9.6528999507427216e-02 2.8125289082527161e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 596 1.7944289371371269e-02</internalNodes>
<leafValues >
5.0230890512466431e-02 -6.4134520292282104e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 597 -3.8975570350885391e-02</internalNodes>
<leafValues >
-2.5966680049896240e-01 3.0592629685997963e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 598 5.2373361540958285e-04</internalNodes>
<leafValues >
1.0446350276470184e-01 -3.1365889310836792e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 599 -2.5457229465246201e-02</internalNodes>
<leafValues >
-1.6731269657611847e-01 3.7427790462970734e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 600 -4.2908679693937302e-02</internalNodes>
<leafValues >
-4.0295800566673279e-01 6.5455727279186249e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 601 -5.1728109829127789e-03</internalNodes>
<leafValues >
3.1299790740013123e-01 -7.0367880165576935e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 602 -1.8753990298137069e-04</internalNodes>
<leafValues >
1.5299630165100098e-01 -2.0695990324020386e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 603 -1.9984589889645576e-03</internalNodes>
<leafValues >
2.6436290144920349e-01 -1.0118020325899124e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 604 -3.7929560057818890e-03</internalNodes>
<leafValues >
2.8518161177635193e-01 -1.0743419826030731e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 605 4.5540980994701385e-02</internalNodes>
<leafValues >
4.5009840279817581e-02 -2.0425949990749359e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 606 2.4831600487232208e-02</internalNodes>
<leafValues >
4.9255561083555222e-02 -6.0236537456512451e-01</leafValues> </_> </weakClassifiers> </_>
<_ >
<maxWeakCount > 59</maxWeakCount>
<stageThreshold > -1.1971529722213745e+00</stageThreshold>
<weakClassifiers >
<_ >
<internalNodes >
0 -1 607 3.9991321973502636e-03</internalNodes>
<leafValues >
-2.6711270213127136e-01 3.5392650961875916e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 608 1.1023290455341339e-02</internalNodes>
<leafValues >
-1.0786689817905426e-01 1.0729049891233444e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 609 -3.7521351128816605e-02</internalNodes>
<leafValues >
3.0647391080856323e-01 -2.1749919652938843e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 610 -2.7670729905366898e-03</internalNodes>
<leafValues >
-3.9869681000709534e-01 8.7402120232582092e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 611 1.9890109542757273e-03</internalNodes>
<leafValues >
-3.2719919085502625e-01 2.0264029502868652e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 612 1.9364669919013977e-02</internalNodes>
<leafValues >
-5.1705140620470047e-02 1.2021850049495697e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 613 -1.1918369680643082e-02</internalNodes>
<leafValues >
1.2546530365943909e-01 -3.7106749415397644e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 614 9.5910847187042236e-02</internalNodes>
<leafValues >
-1.7389330267906189e-01 2.2600440680980682e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 615 1.0751710087060928e-01</internalNodes>
<leafValues >
-7.8588336706161499e-02 5.7250618934631348e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 616 -3.1022340059280396e-02</internalNodes>
<leafValues >
1.4575169980525970e-01 -3.2396531105041504e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 617 1.6883790493011475e-02</internalNodes>
<leafValues >
-1.6565980017185211e-01 2.9082998633384705e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 618 5.0262849981663749e-05</internalNodes>
<leafValues >
-5.7035660743713379e-01 6.2110569328069687e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 619 9.1006923466920853e-03</internalNodes>
<leafValues >
5.5405318737030029e-02 -4.9272969365119934e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 620 -1.6937600076198578e-01</internalNodes>
<leafValues >
5.4915368556976318e-01 -3.9581310003995895e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 621 1.9913749769330025e-02</internalNodes>
<leafValues >
9.4958506524562836e-02 -5.1041561365127563e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 622 3.0223759822547436e-03</internalNodes>
<leafValues >
-6.3331179320812225e-02 2.0407359302043915e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 623 -4.5423391275107861e-03</internalNodes>
<leafValues >
4.2783120274543762e-01 -7.8888073563575745e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 624 -3.5147000104188919e-02</internalNodes>
<leafValues >
-6.1061471700668335e-01 2.5506079196929932e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 625 2.0077088847756386e-03</internalNodes>
<leafValues >
6.3804052770137787e-02 -4.4934588670730591e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 626 -1.5540630556643009e-03</internalNodes>
<leafValues >
-4.0192028880119324e-01 3.1636688858270645e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 627 1.4254899695515633e-02</internalNodes>
<leafValues >
-7.9566307365894318e-02 3.8706529140472412e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 628 1.1024920269846916e-02</internalNodes>
<leafValues >
6.7027233541011810e-02 -2.8063619136810303e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 629 -5.1981899887323380e-03</internalNodes>
<leafValues >
3.6570119857788086e-01 -1.1679860204458237e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 630 4.9434448592364788e-03</internalNodes>
<leafValues >
4.9997199326753616e-02 -1.4642210304737091e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 631 -1.6670800745487213e-02</internalNodes>
<leafValues >
-4.9238750338554382e-01 6.1317440122365952e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 632 7.7939140610396862e-03</internalNodes>
<leafValues >
-2.9953140765428543e-02 2.3316749930381775e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 633 -1.4590610517188907e-03</internalNodes>
<leafValues >
-5.7006311416625977e-01 5.3406499326229095e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 634 -2.2517830133438110e-02</internalNodes>
<leafValues >
1.1464659869670868e-01 -1.2585699558258057e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 635 1.4919370412826538e-02</internalNodes>
<leafValues >
5.2204128354787827e-02 -5.6187790632247925e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 636 -1.8656760454177856e-01</internalNodes>
<leafValues >
6.0989791154861450e-01 -5.0142709165811539e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 637 1.2466400221455842e-04</internalNodes>
<leafValues >
-3.2725819945335388e-01 8.6407169699668884e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 638 -8.5008898749947548e-03</internalNodes>
<leafValues >
4.0898931026458740e-01 -8.6464531719684601e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 639 1.4465590007603168e-02</internalNodes>
<leafValues >
5.5936750024557114e-02 -5.2939140796661377e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 640 1.1536439880728722e-02</internalNodes>
<leafValues >
-9.3967936933040619e-02 4.0461421012878418e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 641 1.6789000481367111e-02</internalNodes>
<leafValues >
4.9098148941993713e-02 -6.1509531736373901e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 642 -2.9727790970355272e-03</internalNodes>
<leafValues >
1.5688349306583405e-01 -7.9878687858581543e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 643 2.7876989915966988e-03</internalNodes>
<leafValues >
-1.1298049986362457e-01 2.3814339935779572e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 644 2.6815771125257015e-03</internalNodes>
<leafValues >
-6.3131898641586304e-02 1.7341490089893341e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 645 -1.6932430444285274e-03</internalNodes>
<leafValues >
2.9134979844093323e-01 -9.7688913345336914e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 646 -2.1838879212737083e-02</internalNodes>
<leafValues >
2.2410179674625397e-01 -6.3271783292293549e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 647 -4.6455059200525284e-02</internalNodes>
<leafValues >
-6.6729080677032471e-01 4.1569691151380539e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 648 3.4257268905639648e-01</internalNodes>
<leafValues >
-4.3775469064712524e-02 4.2250889539718628e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 649 -9.7134057432413101e-03</internalNodes>
<leafValues >
2.8876009583473206e-01 -1.0904739797115326e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 650 -1.9520539790391922e-03</internalNodes>
<leafValues >
1.1463859677314758e-01 -1.0175020247697830e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 651 -1.8771419301629066e-02</internalNodes>
<leafValues >
6.2400698661804199e-01 -5.0913780927658081e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 652 2.5264939665794373e-01</internalNodes>
<leafValues >
-2.2805340588092804e-01 1.4274069666862488e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 653 -7.8301310539245605e-02</internalNodes>
<leafValues >
-4.9581411480903625e-01 5.4817609488964081e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 654 -1.6115349531173706e-01</internalNodes>
<leafValues >
-5.7617807388305664e-01 4.2033191770315170e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 655 1.3769039884209633e-02</internalNodes>
<leafValues >
4.6666219830513000e-02 -5.0551378726959229e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 656 -1.8329080194234848e-02</internalNodes>
<leafValues >
-7.9812979698181152e-01 -6.3357828184962273e-04</leafValues> </_>
<_ >
<internalNodes >
0 -1 657 -3.9759539067745209e-03</internalNodes>
<leafValues >
2.6330900192260742e-01 -1.0175059735774994e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 658 1.9660349935293198e-02</internalNodes>
<leafValues >
3.9909198880195618e-02 -6.7467451095581055e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 659 -8.9697521179914474e-03</internalNodes>
<leafValues >
5.5054008960723877e-02 -4.3380209803581238e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 660 1.7052260041236877e-01</internalNodes>
<leafValues >
-8.9983023703098297e-02 1.5587039291858673e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 661 -6.7584879696369171e-02</internalNodes>
<leafValues >
1.8699319660663605e-01 -1.3449880480766296e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 662 -4.9654832109808922e-03</internalNodes>
<leafValues >
2.1740439534187317e-01 -6.8494133651256561e-02</leafValues> </_>
<_ >
<internalNodes >
0 -1 663 -3.6419339012354612e-03</internalNodes>
<leafValues >
2.2659860551357269e-01 -1.1511819809675217e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 664 3.0941639095544815e-02</internalNodes>
<leafValues >
9.5881456509232521e-03 -4.3764260411262512e-01</leafValues> </_>
<_ >
<internalNodes >
0 -1 665 2.0714900456368923e-03</internalNodes>
<leafValues >
-6.9400407373905182e-02 3.5815268754959106e-01</leafValues> </_> </weakClassifiers> </_> </stages>
<features >
<_ >
<rects >
<_ >
2 7 8 12 -1.</_>
<_ >
2 7 4 6 2.</_>
<_ >
6 13 4 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 7 8 2 -1.</_>
<_ >
5 7 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 3 4 -1.</_>
<_ >
5 5 3 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 0 8 18 -1.</_>
<_ >
4 9 8 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 3 2 -1.</_>
<_ >
0 19 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 10 -1.</_>
<_ >
11 5 1 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 10 1 -1.</_>
<_ >
5 0 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 5 8 14 -1.</_>
<_ >
2 5 4 7 2.</_>
<_ >
6 12 4 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 12 8 -1.</_>
<_ >
0 4 12 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 7 6 10 -1.</_>
<_ >
2 12 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 2 4 8 -1.</_>
<_ >
10 2 2 4 2.</_>
<_ >
8 6 2 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 4 8 -1.</_>
<_ >
0 2 2 4 2.</_>
<_ >
2 6 2 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 12 2 -1.</_>
<_ >
6 18 6 1 2.</_>
<_ >
0 19 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 14 12 6 -1.</_>
<_ >
6 14 6 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 12 2 6 -1.</_>
<_ >
6 12 2 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 12 6 2 -1.</_>
<_ >
6 12 3 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 8 6 6 -1.</_>
<_ >
8 10 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 9 3 -1.</_>
<_ >
6 7 3 1 9.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 12 -1.</_>
<_ >
0 6 1 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 2 4 5 -1.</_>
<_ >
6 2 2 5 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 5 4 4 -1.</_>
<_ >
4 7 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 4 4 -1.</_>
<_ >
8 2 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 0 3 20 -1.</_>
<_ >
3 10 3 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 16 3 4 -1.</_>
<_ >
9 17 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 4 4 -1.</_>
<_ >
0 2 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 16 3 4 -1.</_>
<_ >
9 17 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 16 3 4 -1.</_>
<_ >
0 17 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 7 8 1 -1.</_>
<_ >
5 7 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 9 6 -1.</_>
<_ >
3 6 3 2 9.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 6 1 -1.</_>
<_ >
8 15 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 13 1 6 -1.</_>
<_ >
4 15 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 3 9 2 -1.</_>
<_ >
2 4 9 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 1 4 -1.</_>
<_ >
0 8 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 8 7 10 -1.</_>
<_ >
4 13 7 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 7 8 12 -1.</_>
<_ >
2 7 4 6 2.</_>
<_ >
6 13 4 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
7 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
5 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 16 4 4 -1.</_>
<_ >
5 18 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 17 12 3 -1.</_>
<_ >
6 17 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 15 12 3 -1.</_>
<_ >
0 15 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 16 -1.</_>
<_ >
0 4 2 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 0 8 13 -1.</_>
<_ >
2 0 4 13 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 6 2 -1.</_>
<_ >
0 1 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 18 5 2 -1.</_>
<_ >
7 19 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 5 2 -1.</_>
<_ >
0 19 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 15 2 3 -1.</_>
<_ >
6 15 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 15 3 2 -1.</_>
<_ >
6 15 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 7 8 12 -1.</_>
<_ >
2 7 4 6 2.</_>
<_ >
6 13 4 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 16 4 4 -1.</_>
<_ >
5 18 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
4 5 6 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 16 12 4 -1.</_>
<_ >
6 16 6 2 2.</_>
<_ >
0 18 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 10 4 -1.</_>
<_ >
0 4 10 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 2 8 -1.</_>
<_ >
6 11 2 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 9 8 3 -1.</_>
<_ >
6 11 4 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 12 1 6 -1.</_>
<_ >
6 12 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 12 6 1 -1.</_>
<_ >
6 12 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 1 4 10 -1.</_>
<_ >
10 1 2 5 2.</_>
<_ >
8 6 2 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 12 -1.</_>
<_ >
0 6 1 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 0 2 1 -1.</_>
<_ >
9 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 0 1 2 -1.</_>
<_ >
3 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 3 3 -1.</_>
<_ >
7 5 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
5 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 2 2 3 -1.</_>
<_ >
10 3 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 2 3 -1.</_>
<_ >
0 3 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 8 8 4 -1.</_>
<_ >
6 10 4 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 9 3 -1.</_>
<_ >
6 7 3 1 9.</_> </rects> </_>
<_ >
<rects >
<_ >
0 1 4 10 -1.</_>
<_ >
0 1 2 5 2.</_>
<_ >
2 6 2 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 3 8 17 -1.</_>
<_ >
5 3 4 17 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 4 8 -1.</_>
<_ >
6 0 2 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 10 6 3 -1.</_>
<_ >
6 10 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 18 4 2 -1.</_>
<_ >
0 19 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 10 6 3 -1.</_>
<_ >
6 10 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 6 9 3 -1.</_>
<_ >
4 7 3 1 9.</_> </rects> </_>
<_ >
<rects >
<_ >
6 10 6 3 -1.</_>
<_ >
6 10 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 10 3 6 -1.</_>
<_ >
6 10 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 0 12 10 -1.</_>
<_ >
0 5 12 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 0 1 2 -1.</_>
<_ >
2 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 5 4 8 -1.</_>
<_ >
4 7 4 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 3 -1.</_>
<_ >
1 0 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 8 12 4 -1.</_>
<_ >
0 9 12 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 3 1 3 -1.</_>
<_ >
1 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 9 8 2 -1.</_>
<_ >
6 11 4 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 3 2 6 -1.</_>
<_ >
5 5 2 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 8 -1.</_>
<_ >
0 4 1 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 5 8 14 -1.</_>
<_ >
6 5 4 7 2.</_>
<_ >
2 12 4 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 1 8 -1.</_>
<_ >
0 8 1 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 17 12 3 -1.</_>
<_ >
0 17 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 2 3 -1.</_>
<_ >
4 1 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 12 6 8 -1.</_>
<_ >
5 14 6 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 11 4 9 -1.</_>
<_ >
3 14 4 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 0 10 16 -1.</_>
<_ >
2 8 10 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 15 3 2 -1.</_>
<_ >
5 15 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 15 4 1 -1.</_>
<_ >
9 16 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 15 1 4 -1.</_>
<_ >
3 16 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 14 3 3 -1.</_>
<_ >
7 15 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 14 3 3 -1.</_>
<_ >
5 15 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 8 2 -1.</_>
<_ >
5 6 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 2 6 17 -1.</_>
<_ >
5 2 2 17 3.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 2 -1.</_>
<_ >
11 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 14 4 2 -1.</_>
<_ >
6 14 4 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 0 8 1 -1.</_>
<_ >
3 0 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 2 -1.</_>
<_ >
0 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 3 3 -1.</_>
<_ >
7 5 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 3 3 -1.</_>
<_ >
5 5 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 0 4 2 -1.</_>
<_ >
10 0 2 1 2.</_>
<_ >
8 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 4 2 -1.</_>
<_ >
0 0 2 1 2.</_>
<_ >
2 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 5 3 3 -1.</_>
<_ >
8 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 5 8 14 -1.</_>
<_ >
2 5 4 7 2.</_>
<_ >
6 12 4 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 7 4 1 -1.</_>
<_ >
7 7 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 1 3 -1.</_>
<_ >
5 1 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 6 4 1 -1.</_>
<_ >
8 6 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 6 1 4 -1.</_>
<_ >
4 6 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 1 7 9 -1.</_>
<_ >
3 4 7 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 9 6 3 -1.</_>
<_ >
3 9 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 18 10 2 -1.</_>
<_ >
7 18 5 1 2.</_>
<_ >
2 19 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 6 1 -1.</_>
<_ >
6 13 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 5 2 3 -1.</_>
<_ >
8 5 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 5 3 2 -1.</_>
<_ >
4 5 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 14 12 5 -1.</_>
<_ >
0 14 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 8 2 -1.</_>
<_ >
5 0 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 16 2 2 -1.</_>
<_ >
6 16 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 16 2 2 -1.</_>
<_ >
6 16 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 9 1 6 -1.</_>
<_ >
4 11 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 9 6 1 -1.</_>
<_ >
8 11 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 17 1 3 -1.</_>
<_ >
10 18 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 17 1 3 -1.</_>
<_ >
1 18 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
11 2 1 18 -1.</_>
<_ >
11 8 1 6 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 20 -1.</_>
<_ >
0 5 1 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 6 2 -1.</_>
<_ >
7 0 3 1 2.</_>
<_ >
4 1 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 2 3 -1.</_>
<_ >
0 6 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 2 1 -1.</_>
<_ >
8 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 3 4 2 -1.</_>
<_ >
3 4 2 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 2 2 -1.</_>
<_ >
6 5 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 12 12 5 -1.</_>
<_ >
3 12 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 10 2 -1.</_>
<_ >
0 18 5 1 2.</_>
<_ >
5 19 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 3 8 13 -1.</_>
<_ >
5 3 4 13 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 3 8 13 -1.</_>
<_ >
3 3 4 13 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 4 -1.</_>
<_ >
11 0 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 1 10 2 -1.</_>
<_ >
0 1 5 1 2.</_>
<_ >
5 2 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 11 8 5 -1.</_>
<_ >
4 11 4 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 14 -1.</_>
<_ >
0 7 1 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 10 4 6 -1.</_>
<_ >
6 12 4 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 10 6 4 -1.</_>
<_ >
6 12 2 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 17 12 2 -1.</_>
<_ >
0 17 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 6 3 3 -1.</_>
<_ >
4 7 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 9 6 4 -1.</_>
<_ >
6 9 3 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 9 4 6 -1.</_>
<_ >
6 9 4 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 0 2 1 -1.</_>
<_ >
10 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 0 1 2 -1.</_>
<_ >
2 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 9 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 4 -1.</_>
<_ >
1 0 1 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 3 2 -1.</_>
<_ >
2 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 1 4 1 -1.</_>
<_ >
9 2 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 1 1 4 -1.</_>
<_ >
3 2 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 2 12 4 -1.</_>
<_ >
0 4 12 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 3 8 -1.</_>
<_ >
6 11 3 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 6 8 14 -1.</_>
<_ >
2 6 4 7 2.</_>
<_ >
6 13 4 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 18 1 2 -1.</_>
<_ >
11 19 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 2 2 -1.</_>
<_ >
0 19 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
8 5 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 6 4 4 -1.</_>
<_ >
4 7 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 2 3 -1.</_>
<_ >
7 1 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 0 3 2 -1.</_>
<_ >
5 1 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 7 1 2 -1.</_>
<_ >
11 8 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 7 1 2 -1.</_>
<_ >
0 8 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 8 8 -1.</_>
<_ >
6 0 4 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 12 12 7 -1.</_>
<_ >
6 12 6 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 2 1 -1.</_>
<_ >
8 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 0 1 2 -1.</_>
<_ >
4 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 10 2 6 -1.</_>
<_ >
4 12 2 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 4 1 3 -1.</_>
<_ >
0 5 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
9 8 3 4 -1.</_>
<_ >
10 8 1 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 1 2 -1.</_>
<_ >
0 7 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 4 6 12 -1.</_>
<_ >
4 7 6 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 16 4 4 -1.</_>
<_ >
3 18 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 3 6 -1.</_>
<_ >
7 4 1 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
5 4 6 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 5 3 3 -1.</_>
<_ >
8 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 3 3 -1.</_>
<_ >
4 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 0 1 6 -1.</_>
<_ >
11 3 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 6 16 -1.</_>
<_ >
0 12 6 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 6 -1.</_>
<_ >
11 3 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 12 6 1 -1.</_>
<_ >
6 12 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 13 12 3 -1.</_>
<_ >
3 13 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 6 8 2 -1.</_>
<_ >
6 6 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 2 4 2 -1.</_>
<_ >
4 2 2 1 2.</_>
<_ >
6 3 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 6 -1.</_>
<_ >
10 3 2 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 4 4 -1.</_>
<_ >
0 4 2 2 2.</_>
<_ >
2 6 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 6 -1.</_>
<_ >
10 3 2 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 6 -1.</_>
<_ >
0 3 2 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 18 1 2 -1.</_>
<_ >
11 19 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 1 2 -1.</_>
<_ >
0 19 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 1 6 -1.</_>
<_ >
6 13 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 17 12 3 -1.</_>
<_ >
6 17 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 13 12 6 -1.</_>
<_ >
0 13 6 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 8 4 -1.</_>
<_ >
0 5 4 2 2.</_>
<_ >
4 7 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 10 3 -1.</_>
<_ >
1 1 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 12 6 -1.</_>
<_ >
0 5 12 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 5 18 -1.</_>
<_ >
5 6 5 6 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 9 9 -1.</_>
<_ >
3 0 3 9 3.</_> </rects> </_>
<_ >
<rects >
<_ >
11 6 1 3 -1.</_>
<_ >
11 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 12 4 2 -1.</_>
<_ >
2 12 2 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 6 1 3 -1.</_>
<_ >
11 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 10 3 1 -1.</_>
<_ >
2 10 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
9 14 3 4 -1.</_>
<_ >
9 16 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 14 3 4 -1.</_>
<_ >
0 16 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 5 3 3 -1.</_>
<_ >
8 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 3 3 -1.</_>
<_ >
4 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 6 1 3 -1.</_>
<_ >
11 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 1 3 -1.</_>
<_ >
0 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 6 6 8 -1.</_>
<_ >
3 10 6 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 4 3 -1.</_>
<_ >
5 5 4 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 5 3 4 -1.</_>
<_ >
9 6 1 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 5 4 3 -1.</_>
<_ >
3 6 4 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 0 3 1 -1.</_>
<_ >
8 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 0 2 3 -1.</_>
<_ >
2 1 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
8 5 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 4 2 4 -1.</_>
<_ >
5 5 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 14 6 6 -1.</_>
<_ >
3 17 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 8 12 -1.</_>
<_ >
2 5 4 12 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 4 -1.</_>
<_ >
11 0 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 0 4 1 -1.</_>
<_ >
1 0 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 18 6 2 -1.</_>
<_ >
7 18 3 1 2.</_>
<_ >
4 19 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 8 2 -1.</_>
<_ >
0 18 4 1 2.</_>
<_ >
4 19 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 8 8 -1.</_>
<_ >
6 0 4 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 1 -1.</_>
<_ >
1 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 1 -1.</_>
<_ >
10 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 6 1 -1.</_>
<_ >
6 13 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 13 12 1 -1.</_>
<_ >
3 13 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 11 8 5 -1.</_>
<_ >
4 11 4 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 6 4 14 -1.</_>
<_ >
10 6 2 7 2.</_>
<_ >
8 13 2 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 4 14 -1.</_>
<_ >
0 6 2 7 2.</_>
<_ >
2 13 2 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 3 8 2 -1.</_>
<_ >
4 4 8 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 1 -1.</_>
<_ >
1 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 10 3 -1.</_>
<_ >
1 1 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 3 2 -1.</_>
<_ >
1 18 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 12 12 -1.</_>
<_ >
0 8 12 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 6 14 -1.</_>
<_ >
0 13 6 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 3 1 -1.</_>
<_ >
9 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 7 2 3 -1.</_>
<_ >
4 8 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 3 1 3 -1.</_>
<_ >
11 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 1 3 2 -1.</_>
<_ >
2 1 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 3 1 3 -1.</_>
<_ >
11 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 17 1 2 -1.</_>
<_ >
3 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 3 1 3 -1.</_>
<_ >
11 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 6 2 3 -1.</_>
<_ >
5 7 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 3 1 3 -1.</_>
<_ >
11 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 3 1 3 -1.</_>
<_ >
0 4 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 3 2 -1.</_>
<_ >
7 5 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 2 3 -1.</_>
<_ >
5 5 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 8 1 4 -1.</_>
<_ >
11 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 2 4 6 -1.</_>
<_ >
4 4 4 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 17 6 2 -1.</_>
<_ >
8 17 3 1 2.</_>
<_ >
5 18 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 0 6 2 -1.</_>
<_ >
3 0 3 1 2.</_>
<_ >
6 1 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 3 1 2 -1.</_>
<_ >
11 4 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 3 1 2 -1.</_>
<_ >
0 4 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 4 2 4 -1.</_>
<_ >
10 5 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 8 1 4 -1.</_>
<_ >
0 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 13 12 5 -1.</_>
<_ >
0 13 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 10 10 -1.</_>
<_ >
1 9 5 5 2.</_>
<_ >
6 14 5 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 1 6 2 -1.</_>
<_ >
1 1 3 1 2.</_>
<_ >
4 2 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 4 3 5 -1.</_>
<_ >
8 5 1 5 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 1 -1.</_>
<_ >
8 5 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 4 1 12 -1.</_>
<_ >
11 8 1 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 1 12 -1.</_>
<_ >
0 8 1 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 8 4 8 -1.</_>
<_ >
6 10 4 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 7 10 12 -1.</_>
<_ >
1 7 5 6 2.</_>
<_ >
6 13 5 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
8 5 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 4 4 -1.</_>
<_ >
3 6 2 2 2.</_>
<_ >
5 8 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 2 2 2 -1.</_>
<_ >
10 3 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 2 2 -1.</_>
<_ >
0 3 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 17 2 1 -1.</_>
<_ >
8 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 8 3 3 -1.</_>
<_ >
1 8 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 14 3 6 -1.</_>
<_ >
6 14 1 6 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 14 3 5 -1.</_>
<_ >
5 14 1 5 3.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 2 -1.</_>
<_ >
10 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 2 -1.</_>
<_ >
0 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 12 12 7 -1.</_>
<_ >
0 12 6 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 14 3 2 -1.</_>
<_ >
7 15 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 16 1 4 -1.</_>
<_ >
11 18 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 16 1 4 -1.</_>
<_ >
0 18 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 2 6 4 -1.</_>
<_ >
4 4 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 6 3 3 -1.</_>
<_ >
4 7 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 0 4 20 -1.</_>
<_ >
8 10 4 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 11 2 3 -1.</_>
<_ >
3 12 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 4 20 -1.</_>
<_ >
8 10 4 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 4 20 -1.</_>
<_ >
0 10 4 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 5 3 3 -1.</_>
<_ >
6 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 3 3 -1.</_>
<_ >
6 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 0 3 1 -1.</_>
<_ >
8 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 0 1 3 -1.</_>
<_ >
4 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 9 12 3 -1.</_>
<_ >
0 10 12 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 8 1 -1.</_>
<_ >
2 0 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 13 4 2 -1.</_>
<_ >
9 13 2 1 2.</_>
<_ >
7 14 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 13 4 2 -1.</_>
<_ >
1 13 2 1 2.</_>
<_ >
3 14 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
8 5 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 9 2 1 -1.</_>
<_ >
3 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
8 5 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 3 6 -1.</_>
<_ >
4 5 3 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 6 2 3 -1.</_>
<_ >
10 7 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 4 3 -1.</_>
<_ >
5 4 4 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 0 3 1 -1.</_>
<_ >
8 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 1 3 -1.</_>
<_ >
5 6 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 9 3 8 -1.</_>
<_ >
6 11 3 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 9 8 3 -1.</_>
<_ >
6 11 4 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 1 3 -1.</_>
<_ >
6 1 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 4 2 -1.</_>
<_ >
4 0 2 1 2.</_>
<_ >
6 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 10 12 2 -1.</_>
<_ >
0 11 12 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 11 8 5 -1.</_>
<_ >
4 11 4 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 0 4 2 -1.</_>
<_ >
7 0 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 2 7 8 -1.</_>
<_ >
2 4 7 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 0 4 2 -1.</_>
<_ >
7 0 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 4 2 -1.</_>
<_ >
3 0 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 17 3 3 -1.</_>
<_ >
9 18 3 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 17 3 3 -1.</_>
<_ >
0 18 3 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 12 2 -1.</_>
<_ >
0 18 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 11 12 5 -1.</_>
<_ >
3 11 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 7 4 1 -1.</_>
<_ >
8 7 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 7 1 4 -1.</_>
<_ >
4 7 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 0 6 7 -1.</_>
<_ >
6 0 2 7 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 0 6 7 -1.</_>
<_ >
4 0 2 7 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 16 12 3 -1.</_>
<_ >
0 17 12 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 17 4 2 -1.</_>
<_ >
4 17 2 1 2.</_>
<_ >
6 18 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 0 3 1 -1.</_>
<_ >
10 0 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 3 1 -1.</_>
<_ >
1 0 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 3 2 -1.</_>
<_ >
7 5 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 3 1 -1.</_>
<_ >
4 6 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
9 2 3 7 -1.</_>
<_ >
10 3 1 7 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 2 2 -1.</_>
<_ >
5 5 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 5 3 4 -1.</_>
<_ >
8 6 1 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 4 3 -1.</_>
<_ >
4 6 4 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 4 2 2 -1.</_>
<_ >
10 5 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 3 2 3 -1.</_>
<_ >
0 4 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
10 4 2 2 -1.</_>
<_ >
10 5 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 2 2 -1.</_>
<_ >
0 5 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 10 2 1 -1.</_>
<_ >
7 10 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 10 2 1 -1.</_>
<_ >
4 10 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 2 2 -1.</_>
<_ >
5 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 14 4 2 -1.</_>
<_ >
5 14 4 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 6 3 3 -1.</_>
<_ >
4 7 3 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 5 6 14 -1.</_>
<_ >
6 5 3 7 2.</_>
<_ >
3 12 3 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 0 3 2 -1.</_>
<_ >
3 1 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 18 5 2 -1.</_>
<_ >
7 19 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 10 2 -1.</_>
<_ >
0 19 10 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 2 1 15 -1.</_>
<_ >
11 7 1 5 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 1 6 -1.</_>
<_ >
0 7 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 2 9 8 -1.</_>
<_ >
3 4 9 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 15 12 5 -1.</_>
<_ >
6 15 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 9 3 6 -1.</_>
<_ >
4 11 3 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 9 6 3 -1.</_>
<_ >
8 11 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 0 10 2 -1.</_>
<_ >
2 0 5 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 10 2 -1.</_>
<_ >
5 0 5 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
8 5 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
4 5 6 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 6 5 -1.</_>
<_ >
6 0 3 5 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 5 6 -1.</_>
<_ >
6 0 5 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 8 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 8 2 3 -1.</_>
<_ >
3 9 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 6 1 3 -1.</_>
<_ >
11 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 6 1 3 -1.</_>
<_ >
0 7 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 11 12 8 -1.</_>
<_ >
0 15 12 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 13 6 3 -1.</_>
<_ >
5 13 2 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 16 2 4 -1.</_>
<_ >
5 17 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 1 2 1 -1.</_>
<_ >
1 1 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 15 2 3 -1.</_>
<_ >
5 16 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 3 3 -1.</_>
<_ >
4 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 2 3 -1.</_>
<_ >
6 6 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 5 2 3 -1.</_>
<_ >
4 6 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
10 5 2 3 -1.</_>
<_ >
10 6 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 5 2 3 -1.</_>
<_ >
5 6 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 7 1 8 -1.</_>
<_ >
6 9 1 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 5 2 3 -1.</_>
<_ >
0 6 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 5 2 3 -1.</_>
<_ >
5 5 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 7 8 1 -1.</_>
<_ >
6 9 4 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 15 2 3 -1.</_>
<_ >
5 16 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 15 3 2 -1.</_>
<_ >
7 16 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
9 13 2 3 -1.</_>
<_ >
9 14 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 13 2 3 -1.</_>
<_ >
1 14 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 12 12 -1.</_>
<_ >
0 9 12 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 3 2 -1.</_>
<_ >
1 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 6 1 -1.</_>
<_ >
8 15 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 9 2 4 -1.</_>
<_ >
0 9 1 2 2.</_>
<_ >
1 11 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 17 8 2 -1.</_>
<_ >
6 17 4 1 2.</_>
<_ >
2 18 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 8 9 2 -1.</_>
<_ >
1 9 9 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 4 1 4 -1.</_>
<_ >
5 5 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 3 3 -1.</_>
<_ >
7 1 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 0 3 3 -1.</_>
<_ >
5 1 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 13 12 6 -1.</_>
<_ >
0 13 6 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 4 3 3 -1.</_>
<_ >
6 5 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
9 17 1 3 -1.</_>
<_ >
9 18 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 17 1 3 -1.</_>
<_ >
2 18 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 12 6 -1.</_>
<_ >
0 11 12 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 6 6 2 -1.</_>
<_ >
5 6 3 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 3 4 -1.</_>
<_ >
7 5 1 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 4 3 -1.</_>
<_ >
5 5 4 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 4 1 16 -1.</_>
<_ >
11 8 1 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 20 -1.</_>
<_ >
0 5 1 10 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 0 2 1 -1.</_>
<_ >
9 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 0 1 2 -1.</_>
<_ >
3 0 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 13 6 6 -1.</_>
<_ >
9 13 3 3 2.</_>
<_ >
6 16 3 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 10 6 4 -1.</_>
<_ >
8 12 2 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 0 10 3 -1.</_>
<_ >
1 1 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 13 6 6 -1.</_>
<_ >
0 13 3 3 2.</_>
<_ >
3 16 3 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 8 3 1 -1.</_>
<_ >
9 9 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 7 2 2 -1.</_>
<_ >
0 8 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 2 2 -1.</_>
<_ >
8 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 9 2 2 -1.</_>
<_ >
3 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 1 1 2 -1.</_>
<_ >
11 2 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 1 3 -1.</_>
<_ >
4 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 4 5 12 -1.</_>
<_ >
4 8 5 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 3 3 -1.</_>
<_ >
1 0 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 7 3 3 -1.</_>
<_ >
9 8 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 7 3 3 -1.</_>
<_ >
3 8 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 1 1 2 -1.</_>
<_ >
11 2 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 1 1 2 -1.</_>
<_ >
0 2 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 17 2 1 -1.</_>
<_ >
8 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 17 1 2 -1.</_>
<_ >
4 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 6 2 4 -1.</_>
<_ >
8 6 1 2 2.</_>
<_ >
7 8 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 8 6 6 -1.</_>
<_ >
6 8 6 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 6 2 4 -1.</_>
<_ >
8 6 1 2 2.</_>
<_ >
7 8 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 6 2 4 -1.</_>
<_ >
3 6 1 2 2.</_>
<_ >
4 8 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 1 6 2 -1.</_>
<_ >
8 3 2 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 11 6 5 -1.</_>
<_ >
3 11 3 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 13 3 3 -1.</_>
<_ >
8 13 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 13 3 3 -1.</_>
<_ >
3 13 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 1 6 2 -1.</_>
<_ >
8 3 2 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 1 2 6 -1.</_>
<_ >
4 3 2 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 0 12 7 -1.</_>
<_ >
0 0 6 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 10 3 -1.</_>
<_ >
1 10 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 12 4 -1.</_>
<_ >
0 10 12 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 3 15 -1.</_>
<_ >
0 10 3 5 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 7 18 -1.</_>
<_ >
5 9 7 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 4 5 -1.</_>
<_ >
2 0 2 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 2 4 2 -1.</_>
<_ >
4 2 2 1 2.</_>
<_ >
6 3 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
7 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 7 6 2 -1.</_>
<_ >
3 7 3 1 2.</_>
<_ >
6 8 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 8 10 10 -1.</_>
<_ >
6 8 5 5 2.</_>
<_ >
1 13 5 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 10 3 -1.</_>
<_ >
1 1 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 17 12 3 -1.</_>
<_ >
0 17 6 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 12 -1.</_>
<_ >
0 6 1 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 17 2 1 -1.</_>
<_ >
10 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 18 12 2 -1.</_>
<_ >
0 18 6 1 2.</_>
<_ >
6 19 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 3 5 -1.</_>
<_ >
7 4 1 5 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 5 3 -1.</_>
<_ >
5 4 5 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 5 1 3 -1.</_>
<_ >
11 6 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 5 1 3 -1.</_>
<_ >
0 6 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
7 5 3 2 -1.</_>
<_ >
8 6 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 2 3 -1.</_>
<_ >
4 6 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 2 1 -1.</_>
<_ >
6 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 2 2 -1.</_>
<_ >
5 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 8 1 2 -1.</_>
<_ >
11 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 8 1 2 -1.</_>
<_ >
0 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 0 4 2 -1.</_>
<_ >
9 0 2 1 2.</_>
<_ >
7 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 2 2 -1.</_>
<_ >
5 0 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 0 3 1 -1.</_>
<_ >
9 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 4 8 12 -1.</_>
<_ >
0 7 8 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 14 12 6 -1.</_>
<_ >
0 16 12 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 1 3 -1.</_>
<_ >
3 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 17 2 1 -1.</_>
<_ >
10 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 17 1 2 -1.</_>
<_ >
2 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
9 2 3 1 -1.</_>
<_ >
10 3 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 2 1 3 -1.</_>
<_ >
2 3 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 11 2 2 -1.</_>
<_ >
10 12 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 12 8 -1.</_>
<_ >
0 11 12 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 8 2 8 -1.</_>
<_ >
5 10 2 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 5 1 2 -1.</_>
<_ >
5 6 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 4 3 4 -1.</_>
<_ >
9 5 3 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 7 4 1 -1.</_>
<_ >
3 7 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 9 2 1 -1.</_>
<_ >
10 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 2 1 -1.</_>
<_ >
1 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 6 2 1 -1.</_>
<_ >
10 6 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 6 1 2 -1.</_>
<_ >
2 6 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 1 3 -1.</_>
<_ >
6 6 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 1 3 -1.</_>
<_ >
0 5 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
7 0 4 2 -1.</_>
<_ >
9 0 2 1 2.</_>
<_ >
7 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 0 4 2 -1.</_>
<_ >
1 0 2 1 2.</_>
<_ >
3 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 3 3 -1.</_>
<_ >
6 0 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 11 3 3 -1.</_>
<_ >
5 12 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 10 1 6 -1.</_>
<_ >
6 10 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 9 2 1 -1.</_>
<_ >
3 9 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 0 3 2 -1.</_>
<_ >
9 1 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 11 6 1 -1.</_>
<_ >
6 11 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 15 1 3 -1.</_>
<_ >
6 16 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 16 6 2 -1.</_>
<_ >
2 16 3 1 2.</_>
<_ >
5 17 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 1 2 6 -1.</_>
<_ >
6 1 1 6 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 1 6 2 -1.</_>
<_ >
6 1 6 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 9 3 1 -1.</_>
<_ >
9 9 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 3 1 -1.</_>
<_ >
2 9 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 2 6 1 -1.</_>
<_ >
8 4 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 7 2 4 -1.</_>
<_ >
8 7 1 2 2.</_>
<_ >
7 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 7 2 4 -1.</_>
<_ >
3 7 1 2 2.</_>
<_ >
4 9 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
8 5 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 4 5 12 -1.</_>
<_ >
2 7 5 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 7 18 -1.</_>
<_ >
5 9 7 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 7 18 -1.</_>
<_ >
0 9 7 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 9 1 6 -1.</_>
<_ >
11 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 4 2 -1.</_>
<_ >
4 0 2 1 2.</_>
<_ >
6 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 7 1 6 -1.</_>
<_ >
11 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 7 1 6 -1.</_>
<_ >
0 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 2 3 -1.</_>
<_ >
5 0 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 15 6 2 -1.</_>
<_ >
3 15 3 1 2.</_>
<_ >
6 16 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 1 6 -1.</_>
<_ >
6 13 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 11 8 5 -1.</_>
<_ >
4 11 4 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 1 2 5 -1.</_>
<_ >
10 1 1 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 7 12 13 -1.</_>
<_ >
6 7 6 13 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 8 3 8 -1.</_>
<_ >
6 10 3 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 8 8 3 -1.</_>
<_ >
6 10 4 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 0 10 3 -1.</_>
<_ >
1 1 10 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 1 2 -1.</_>
<_ >
0 3 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 12 2 3 -1.</_>
<_ >
9 13 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 12 2 3 -1.</_>
<_ >
1 13 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
9 0 3 1 -1.</_>
<_ >
10 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 0 1 3 -1.</_>
<_ >
2 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
8 5 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 3 6 -1.</_>
<_ >
4 5 3 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 5 2 3 -1.</_>
<_ >
7 5 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 5 3 2 -1.</_>
<_ >
5 5 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 10 2 1 -1.</_>
<_ >
8 10 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 10 2 1 -1.</_>
<_ >
3 10 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 4 4 2 -1.</_>
<_ >
4 5 4 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 12 9 -1.</_>
<_ >
3 9 6 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 12 1 3 -1.</_>
<_ >
9 13 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 12 1 3 -1.</_>
<_ >
2 13 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 12 3 5 -1.</_>
<_ >
7 13 1 5 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 12 5 3 -1.</_>
<_ >
5 13 5 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 17 6 3 -1.</_>
<_ >
3 18 6 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 15 2 4 -1.</_>
<_ >
5 16 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 18 3 2 -1.</_>
<_ >
8 18 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 4 2 4 -1.</_>
<_ >
1 5 2 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 4 2 3 -1.</_>
<_ >
9 5 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 4 3 2 -1.</_>
<_ >
3 5 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 3 1 -1.</_>
<_ >
7 6 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 6 2 3 -1.</_>
<_ >
5 7 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
8 5 2 6 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 6 -1.</_>
<_ >
4 5 6 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 4 2 3 -1.</_>
<_ >
10 5 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 1 2 -1.</_>
<_ >
0 19 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 1 12 8 -1.</_>
<_ >
0 5 12 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 2 3 -1.</_>
<_ >
0 5 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
7 6 3 2 -1.</_>
<_ >
8 7 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 6 2 3 -1.</_>
<_ >
4 7 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 3 2 -1.</_>
<_ >
7 5 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 2 3 -1.</_>
<_ >
5 5 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 0 3 2 -1.</_>
<_ >
6 0 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 15 3 2 -1.</_>
<_ >
5 15 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 0 1 3 -1.</_>
<_ >
5 1 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
5 4 4 3 -1.</_>
<_ >
5 5 4 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 6 3 3 -1.</_>
<_ >
4 7 1 1 9.</_> </rects> </_>
<_ >
<rects >
<_ >
7 16 1 4 -1.</_>
<_ >
7 18 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 16 1 4 -1.</_>
<_ >
4 18 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 13 1 6 -1.</_>
<_ >
6 13 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 13 6 1 -1.</_>
<_ >
6 13 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 7 1 6 -1.</_>
<_ >
4 9 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 7 6 1 -1.</_>
<_ >
8 9 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 9 1 6 -1.</_>
<_ >
11 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 1 6 -1.</_>
<_ >
0 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 12 1 -1.</_>
<_ >
3 0 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 0 6 8 -1.</_>
<_ >
3 4 6 4 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 3 6 12 -1.</_>
<_ >
3 7 6 4 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 6 1 2 -1.</_>
<_ >
4 7 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 2 -1.</_>
<_ >
11 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 12 8 3 -1.</_>
<_ >
4 12 4 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 4 -1.</_>
<_ >
11 0 1 2 2.</_>
<_ >
10 2 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 4 -1.</_>
<_ >
0 0 1 2 2.</_>
<_ >
1 2 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 0 2 1 -1.</_>
<_ >
10 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 2 1 -1.</_>
<_ >
1 0 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 9 2 6 -1.</_>
<_ >
11 9 1 3 2.</_>
<_ >
10 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 10 12 3 -1.</_>
<_ >
0 11 12 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
7 11 1 3 -1.</_>
<_ >
7 12 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 11 1 3 -1.</_>
<_ >
4 12 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 11 2 3 -1.</_>
<_ >
6 12 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 11 2 3 -1.</_>
<_ >
4 12 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 0 3 1 -1.</_>
<_ >
7 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 1 3 -1.</_>
<_ >
5 1 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 1 4 2 -1.</_>
<_ >
6 1 2 1 2.</_>
<_ >
4 2 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 0 2 6 -1.</_>
<_ >
4 2 2 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 9 2 6 -1.</_>
<_ >
11 9 1 3 2.</_>
<_ >
10 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 9 2 6 -1.</_>
<_ >
0 9 1 3 2.</_>
<_ >
1 12 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 8 6 2 -1.</_>
<_ >
3 9 6 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 8 12 3 -1.</_>
<_ >
0 9 12 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 3 2 -1.</_>
<_ >
7 5 1 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 4 2 3 -1.</_>
<_ >
5 5 2 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 7 1 2 -1.</_>
<_ >
11 8 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 7 1 2 -1.</_>
<_ >
0 8 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 0 4 2 -1.</_>
<_ >
7 0 2 1 2.</_>
<_ >
5 1 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 3 3 -1.</_>
<_ >
5 0 1 3 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 5 2 3 -1.</_>
<_ >
8 5 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
2 0 6 2 -1.</_>
<_ >
2 0 3 1 2.</_>
<_ >
5 1 3 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
10 17 1 3 -1.</_>
<_ >
10 18 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 4 4 -1.</_>
<_ >
0 2 4 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 5 2 3 -1.</_>
<_ >
8 5 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 5 3 2 -1.</_>
<_ >
4 5 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 3 1 -1.</_>
<_ >
7 6 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 1 3 -1.</_>
<_ >
5 6 1 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
10 1 2 7 -1.</_>
<_ >
10 1 1 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 1 2 8 -1.</_>
<_ >
1 1 1 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
11 11 1 6 -1.</_>
<_ >
11 11 1 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
1 11 6 1 -1.</_>
<_ >
1 11 3 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 6 3 -1.</_>
<_ >
8 5 2 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 2 6 6 -1.</_>
<_ >
2 4 2 2 9.</_> </rects> </_>
<_ >
<rects >
<_ >
8 3 4 1 -1.</_>
<_ >
9 4 2 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 3 1 4 -1.</_>
<_ >
3 4 1 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 14 4 2 -1.</_>
<_ >
6 14 2 1 2.</_>
<_ >
4 15 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 16 1 4 -1.</_>
<_ >
5 17 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 12 3 5 -1.</_>
<_ >
7 13 1 5 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 12 5 3 -1.</_>
<_ >
5 13 5 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 2 4 2 -1.</_>
<_ >
4 2 2 1 2.</_>
<_ >
6 3 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 8 3 3 -1.</_>
<_ >
9 9 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 4 5 3 -1.</_>
<_ >
4 5 5 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
9 17 2 3 -1.</_>
<_ >
9 18 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 17 2 3 -1.</_>
<_ >
1 18 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 2 4 10 -1.</_>
<_ >
10 2 2 5 2.</_>
<_ >
8 7 2 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 4 10 -1.</_>
<_ >
0 2 2 5 2.</_>
<_ >
2 7 2 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 13 12 5 -1.</_>
<_ >
3 13 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 18 12 2 -1.</_>
<_ >
6 18 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 14 5 6 -1.</_>
<_ >
4 17 5 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 12 3 -1.</_>
<_ >
0 1 12 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
0 3 12 2 -1.</_>
<_ >
0 4 12 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 8 8 -1.</_>
<_ >
2 0 4 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 10 6 3 -1.</_>
<_ >
6 10 3 3 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 10 6 4 -1.</_>
<_ >
4 10 6 2 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 0 2 2 -1.</_>
<_ >
7 0 1 1 2.</_>
<_ >
6 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 0 2 2 -1.</_>
<_ >
4 0 1 1 2.</_>
<_ >
5 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 13 5 2 -1.</_>
<_ >
7 13 5 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 0 1 3 -1.</_>
<_ >
0 1 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
11 0 1 2 -1.</_>
<_ >
11 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
5 5 3 3 -1.</_>
<_ >
4 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 3 3 4 -1.</_>
<_ >
7 4 1 4 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
3 6 2 4 -1.</_>
<_ >
3 6 1 2 2.</_>
<_ >
4 8 1 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
7 13 5 2 -1.</_>
<_ >
7 13 5 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
5 13 2 5 -1.</_>
<_ >
5 13 1 5 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
11 0 1 2 -1.</_>
<_ >
11 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 0 1 2 -1.</_>
<_ >
0 1 1 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
5 6 3 1 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
6 5 3 3 -1.</_>
<_ >
7 6 1 3 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
0 15 12 5 -1.</_>
<_ >
3 15 6 5 2.</_> </rects> </_>
<_ >
<rects >
<_ >
3 17 1 2 -1.</_>
<_ >
3 17 1 1 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
8 9 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 14 4 6 -1.</_>
<_ >
1 14 2 3 2.</_>
<_ >
3 17 2 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
2 9 8 3 -1.</_>
<_ >
2 10 8 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 9 3 2 -1.</_>
<_ >
9 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 12 1 3 -1.</_>
<_ >
3 13 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 12 1 3 -1.</_>
<_ >
8 13 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
3 12 1 3 -1.</_>
<_ >
3 13 1 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
9 3 3 6 -1.</_>
<_ >
10 5 1 2 9.</_> </rects> </_>
<_ >
<rects >
<_ >
0 3 3 6 -1.</_>
<_ >
1 5 1 2 9.</_> </rects> </_>
<_ >
<rects >
<_ >
6 4 6 16 -1.</_>
<_ >
6 12 6 8 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 3 2 -1.</_>
<_ >
2 9 1 2 3.</_> </rects> </_>
<_ >
<rects >
<_ >
8 5 2 6 -1.</_>
<_ >
9 5 1 3 2.</_>
<_ >
8 8 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
2 5 2 6 -1.</_>
<_ >
2 5 1 3 2.</_>
<_ >
3 8 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 2 12 18 -1.</_>
<_ >
6 2 6 9 2.</_>
<_ >
0 11 6 9 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 13 12 4 -1.</_>
<_ >
0 13 6 2 2.</_>
<_ >
6 15 6 2 2.</_> </rects> </_>
<_ >
<rects >
<_ >
0 4 12 12 -1.</_>
<_ >
0 7 12 6 2.</_> </rects> </_>
<_ >
<rects >
<_ >
4 14 3 6 -1.</_>
<_ >
5 14 1 6 3.</_> </rects> </_>
<_ >
<rects >
<_ >
6 11 2 3 -1.</_>
<_ >
6 12 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
4 11 2 3 -1.</_>
<_ >
4 12 2 1 3.</_> </rects> </_>
<_ >
<rects >
<_ >
1 9 10 2 -1.</_>
<_ >
6 9 5 1 2.</_>
<_ >
1 10 5 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 3 3 6 -1.</_>
<_ >
4 5 3 2 3.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
4 10 8 7 -1.</_>
<_ >
4 10 4 7 2.</_> </rects> </_>
<_ >
<rects >
<_ >
6 7 6 4 -1.</_>
<_ >
6 7 3 4 2.</_> </rects>
<tilted > 1</tilted> </_>
<_ >
<rects >
<_ >
7 13 4 2 -1.</_>
<_ >
9 13 2 1 2.</_>
<_ >
7 14 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 13 4 2 -1.</_>
<_ >
1 13 2 1 2.</_>
<_ >
3 14 2 1 2.</_> </rects> </_>
<_ >
<rects >
<_ >
9 8 2 3 -1.</_>
<_ >
9 8 1 3 2.</_> </rects> </_>
<_ >
<rects >
<_ >
1 8 2 3 -1.</_>
<_ >
2 8 1 3 2.</_> </rects> </_> </features> </cascade>
2011-07-14 22:43:25 +08:00
</opencv_storage>