opencv/modules/imgproc/src/opencl/warp_affine.cl

762 lines
28 KiB
Common Lisp
Raw Normal View History

2013-11-29 23:16:34 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Ying, zhangying913@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//warpAffine kernel
//support data types: CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4, and three interpolation methods: NN, Linear, Cubic.
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
typedef double F;
typedef double4 F4;
#define convert_F4 convert_double4
#else
typedef float F;
typedef float4 F4;
#define convert_F4 convert_float4
#endif
#define INTER_BITS 5
#define INTER_TAB_SIZE (1 << INTER_BITS)
#define INTER_SCALE 1.f/INTER_TAB_SIZE
#define AB_BITS max(10, (int)INTER_BITS)
#define AB_SCALE (1 << AB_BITS)
#define INTER_REMAP_COEF_BITS 15
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
inline void interpolateCubic( float x, float* coeffs )
{
const float A = -0.75f;
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A;
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f;
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f;
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
}
/**********************************************8UC1*********************************************
***********************************************************************************************/
__kernel void warpAffineNN_C1_D0(__global uchar const * restrict src, __global uchar * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
dx = (dx<<2) - (dst_offset&3);
int round_delta = (AB_SCALE>>1);
int4 X, Y;
int4 sx, sy;
int4 DX = (int4)(dx, dx+1, dx+2, dx+3);
DX = (DX << AB_BITS);
F4 M0DX, M3DX;
M0DX = M[0] * convert_F4(DX);
M3DX = M[3] * convert_F4(DX);
X = convert_int4(rint(M0DX));
Y = convert_int4(rint(M3DX));
int tmp1, tmp2;
tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE);
tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE);
X += tmp1 + round_delta;
Y += tmp2 + round_delta;
sx = convert_int4(convert_short4(X >> AB_BITS));
sy = convert_int4(convert_short4(Y >> AB_BITS));
__global uchar4 * d = (__global uchar4 *)(dst+dst_offset+dy*dstStep+dx);
uchar4 dval = *d;
DX = (int4)(dx, dx+1, dx+2, dx+3);
int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows;
int4 scon = sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows;
int4 spos = src_offset + sy * srcStep + sx;
uchar4 sval;
sval.s0 = scon.s0 ? src[spos.s0] : 0;
sval.s1 = scon.s1 ? src[spos.s1] : 0;
sval.s2 = scon.s2 ? src[spos.s2] : 0;
sval.s3 = scon.s3 ? src[spos.s3] : 0;
dval = convert_uchar4(dcon) != (uchar4)(0,0,0,0) ? sval : dval;
*d = dval;
}
}
__kernel void warpAffineLinear_C1_D0(__global const uchar * restrict src, __global uchar * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
dx = (dx<<2) - (dst_offset&3);
int round_delta = ((AB_SCALE >> INTER_BITS) >> 1);
int4 X, Y;
short4 ax, ay;
int4 sx, sy;
int4 DX = (int4)(dx, dx+1, dx+2, dx+3);
DX = (DX << AB_BITS);
F4 M0DX, M3DX;
M0DX = M[0] * convert_F4(DX);
M3DX = M[3] * convert_F4(DX);
X = convert_int4(rint(M0DX));
Y = convert_int4(rint(M3DX));
int tmp1, tmp2;
tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE);
tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE);
X += tmp1 + round_delta;
Y += tmp2 + round_delta;
X = X >> (AB_BITS - INTER_BITS);
Y = Y >> (AB_BITS - INTER_BITS);
sx = convert_int4(convert_short4(X >> INTER_BITS));
sy = convert_int4(convert_short4(Y >> INTER_BITS));
ax = convert_short4(X & (INTER_TAB_SIZE-1));
ay = convert_short4(Y & (INTER_TAB_SIZE-1));
uchar4 v0, v1, v2,v3;
int4 scon0, scon1, scon2, scon3;
int4 spos0, spos1, spos2, spos3;
scon0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows);
scon1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows);
scon2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows);
scon3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows);
spos0 = src_offset + sy * srcStep + sx;
spos1 = src_offset + sy * srcStep + sx + 1;
spos2 = src_offset + (sy+1) * srcStep + sx;
spos3 = src_offset + (sy+1) * srcStep + sx + 1;
v0.s0 = scon0.s0 ? src[spos0.s0] : 0;
v1.s0 = scon1.s0 ? src[spos1.s0] : 0;
v2.s0 = scon2.s0 ? src[spos2.s0] : 0;
v3.s0 = scon3.s0 ? src[spos3.s0] : 0;
v0.s1 = scon0.s1 ? src[spos0.s1] : 0;
v1.s1 = scon1.s1 ? src[spos1.s1] : 0;
v2.s1 = scon2.s1 ? src[spos2.s1] : 0;
v3.s1 = scon3.s1 ? src[spos3.s1] : 0;
v0.s2 = scon0.s2 ? src[spos0.s2] : 0;
v1.s2 = scon1.s2 ? src[spos1.s2] : 0;
v2.s2 = scon2.s2 ? src[spos2.s2] : 0;
v3.s2 = scon3.s2 ? src[spos3.s2] : 0;
v0.s3 = scon0.s3 ? src[spos0.s3] : 0;
v1.s3 = scon1.s3 ? src[spos1.s3] : 0;
v2.s3 = scon2.s3 ? src[spos2.s3] : 0;
v3.s3 = scon3.s3 ? src[spos3.s3] : 0;
short4 itab0, itab1, itab2, itab3;
float4 taby, tabx;
taby = INTER_SCALE * convert_float4(ay);
tabx = INTER_SCALE * convert_float4(ax);
itab0 = convert_short4_sat(( (1.0f-taby)*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE ));
itab1 = convert_short4_sat(( (1.0f-taby)*tabx * (float4)INTER_REMAP_COEF_SCALE ));
itab2 = convert_short4_sat(( taby*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE ));
itab3 = convert_short4_sat(( taby*tabx * (float4)INTER_REMAP_COEF_SCALE ));
int4 val;
uchar4 tval;
val = convert_int4(v0) * convert_int4(itab0) + convert_int4(v1) * convert_int4(itab1)
+ convert_int4(v2) * convert_int4(itab2) + convert_int4(v3) * convert_int4(itab3);
tval = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ;
__global uchar4 * d =(__global uchar4 *)(dst+dst_offset+dy*dstStep+dx);
uchar4 dval = *d;
DX = (int4)(dx, dx+1, dx+2, dx+3);
int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows;
dval = convert_uchar4(dcon != 0) ? tval : dval;
*d = dval;
}
}
__kernel void warpAffineCubic_C1_D0(__global uchar * src, __global uchar * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = ((AB_SCALE>>INTER_BITS)>>1);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
int X = X0 >> (AB_BITS - INTER_BITS);
int Y = Y0 >> (AB_BITS - INTER_BITS);
short sx = (short)(X >> INTER_BITS) - 1;
short sy = (short)(Y >> INTER_BITS) - 1;
short ay = (short)(Y & (INTER_TAB_SIZE-1));
short ax = (short)(X & (INTER_TAB_SIZE-1));
uchar v[16];
int i, j;
#pragma unroll 4
for(i=0; i<4; i++)
for(j=0; j<4; j++)
{
v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? src[src_offset+(sy+i) * srcStep + (sx+j)] : 0;
}
short itab[16];
float tab1y[4], tab1x[4];
float axx, ayy;
ayy = 1.f/INTER_TAB_SIZE * ay;
axx = 1.f/INTER_TAB_SIZE * ax;
interpolateCubic(ayy, tab1y);
interpolateCubic(axx, tab1x);
int isum = 0;
#pragma unroll 16
for( i=0; i<16; i++ )
{
F v = tab1y[(i>>2)] * tab1x[(i&3)];
isum += itab[i] = convert_short_sat( rint( v * INTER_REMAP_COEF_SCALE ) );
}
if( isum != INTER_REMAP_COEF_SCALE )
{
int k1, k2;
int diff = isum - INTER_REMAP_COEF_SCALE;
int Mk1=2, Mk2=2, mk1=2, mk2=2;
for( k1 = 2; k1 < 4; k1++ )
for( k2 = 2; k2 < 4; k2++ )
{
if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] )
mk1 = k1, mk2 = k2;
else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] )
Mk1 = k1, Mk2 = k2;
}
diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff));
}
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
{
int sum=0;
for ( i =0; i<16; i++ )
{
sum += v[i] * itab[i] ;
}
dst[dst_offset+dy*dstStep+dx] = convert_uchar_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ;
}
}
}
/**********************************************8UC4*********************************************
***********************************************************************************************/
__kernel void warpAffineNN_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = (AB_SCALE >> 1);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
int sx0 = (short)(X0 >> AB_BITS);
int sy0 = (short)(Y0 >> AB_BITS);
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[(dst_offset>>2)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>2)+sy0*(srcStep>>2)+sx0] : (uchar4)0;
}
}
__kernel void warpAffineLinear_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
src_offset = (src_offset>>2);
srcStep = (srcStep>>2);
int tmp = (dx << AB_BITS);
int X0 = rint(M[0] * tmp);
int Y0 = rint(M[3] * tmp);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx0 = (short)(X0 >> INTER_BITS);
short sy0 = (short)(Y0 >> INTER_BITS);
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1));
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1));
int4 v0, v1, v2, v3;
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0]) : 0;
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0+1]) : 0;
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0]) : 0;
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0+1]) : 0;
int itab0, itab1, itab2, itab3;
float taby, tabx;
taby = 1.f/INTER_TAB_SIZE*ay0;
tabx = 1.f/INTER_TAB_SIZE*ax0;
itab0 = convert_short_sat(rint( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ));
itab1 = convert_short_sat(rint( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ));
itab2 = convert_short_sat(rint( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ));
itab3 = convert_short_sat(rint( taby*tabx * INTER_REMAP_COEF_SCALE ));
int4 val;
val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3;
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[(dst_offset>>2)+dy*(dstStep>>2)+dx] = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ;
}
}
__kernel void warpAffineCubic_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = ((AB_SCALE>>INTER_BITS)>>1);
src_offset = (src_offset>>2);
srcStep = (srcStep>>2);
dst_offset = (dst_offset>>2);
dstStep = (dstStep>>2);
int tmp = (dx << AB_BITS);
int X0 = rint(M[0] * tmp);
int Y0 = rint(M[3] * tmp);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
int sx = (short)(X0 >> INTER_BITS) - 1;
int sy = (short)(Y0 >> INTER_BITS) - 1;
int ay = (short)(Y0 & (INTER_TAB_SIZE-1));
int ax = (short)(X0 & (INTER_TAB_SIZE-1));
uchar4 v[16];
int i,j;
#pragma unroll 4
for(i=0; i<4; i++)
for(j=0; j<4; j++)
{
v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? (src[src_offset+(sy+i) * srcStep + (sx+j)]) : (uchar4)0;
}
int itab[16];
float tab1y[4], tab1x[4];
float axx, ayy;
ayy = INTER_SCALE * ay;
axx = INTER_SCALE * ax;
interpolateCubic(ayy, tab1y);
interpolateCubic(axx, tab1x);
int isum = 0;
#pragma unroll 16
for( i=0; i<16; i++ )
{
float tmp;
tmp = tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE;
itab[i] = rint(tmp);
isum += itab[i];
}
if( isum != INTER_REMAP_COEF_SCALE )
{
int k1, k2;
int diff = isum - INTER_REMAP_COEF_SCALE;
int Mk1=2, Mk2=2, mk1=2, mk2=2;
for( k1 = 2; k1 < 4; k1++ )
for( k2 = 2; k2 < 4; k2++ )
{
if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] )
mk1 = k1, mk2 = k2;
else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] )
Mk1 = k1, Mk2 = k2;
}
diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff));
}
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
{
int4 sum=0;
for ( i =0; i<16; i++ )
{
sum += convert_int4(v[i]) * itab[i];
}
dst[dst_offset+dy*dstStep+dx] = convert_uchar4_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ;
}
}
}
/**********************************************32FC1********************************************
***********************************************************************************************/
__kernel void warpAffineNN_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/2;
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
short sx0 = (short)(X0 >> AB_BITS);
short sy0 = (short)(Y0 >> AB_BITS);
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[(dst_offset>>2)+dy*dstStep+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>2)+sy0*srcStep+sx0] : 0;
}
}
__kernel void warpAffineLinear_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
src_offset = (src_offset>>2);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx0 = (short)(X0 >> INTER_BITS);
short sy0 = (short)(Y0 >> INTER_BITS);
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1));
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1));
float v0, v1, v2, v3;
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : 0;
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : 0;
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : 0;
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : 0;
float tab[4];
float taby[2], tabx[2];
taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0;
taby[1] = 1.f/INTER_TAB_SIZE*ay0;
tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0;
tabx[1] = 1.f/INTER_TAB_SIZE*ax0;
tab[0] = taby[0] * tabx[0];
tab[1] = taby[0] * tabx[1];
tab[2] = taby[1] * tabx[0];
tab[3] = taby[1] * tabx[1];
float sum = 0;
sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3];
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[(dst_offset>>2)+dy*dstStep+dx] = sum;
}
}
__kernel void warpAffineCubic_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
src_offset = (src_offset>>2);
dst_offset = (dst_offset>>2);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx = (short)(X0 >> INTER_BITS) - 1;
short sy = (short)(Y0 >> INTER_BITS) - 1;
short ay = (short)(Y0 & (INTER_TAB_SIZE-1));
short ax = (short)(X0 & (INTER_TAB_SIZE-1));
float v[16];
int i;
for(i=0; i<16; i++)
v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : 0;
float tab[16];
float tab1y[4], tab1x[4];
float axx, ayy;
ayy = 1.f/INTER_TAB_SIZE * ay;
axx = 1.f/INTER_TAB_SIZE * ax;
interpolateCubic(ayy, tab1y);
interpolateCubic(axx, tab1x);
#pragma unroll 4
for( i=0; i<16; i++ )
{
tab[i] = tab1y[(i>>2)] * tab1x[(i&3)];
}
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
{
float sum = 0;
#pragma unroll 4
for ( i =0; i<16; i++ )
{
sum += v[i] * tab[i];
}
dst[dst_offset+dy*dstStep+dx] = sum;
}
}
}
/**********************************************32FC4********************************************
***********************************************************************************************/
__kernel void warpAffineNN_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/2;
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
short sx0 = (short)(X0 >> AB_BITS);
short sy0 = (short)(Y0 >> AB_BITS);
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[(dst_offset>>4)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>4)+sy0*(srcStep>>2)+sx0] : (float4)0;
}
}
__kernel void warpAffineLinear_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
src_offset = (src_offset>>4);
dst_offset = (dst_offset>>4);
srcStep = (srcStep>>2);
dstStep = (dstStep>>2);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx0 = (short)(X0 >> INTER_BITS);
short sy0 = (short)(Y0 >> INTER_BITS);
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1));
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1));
float4 v0, v1, v2, v3;
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : (float4)0;
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : (float4)0;
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : (float4)0;
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : (float4)0;
float tab[4];
float taby[2], tabx[2];
taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0;
taby[1] = 1.f/INTER_TAB_SIZE*ay0;
tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0;
tabx[1] = 1.f/INTER_TAB_SIZE*ax0;
tab[0] = taby[0] * tabx[0];
tab[1] = taby[0] * tabx[1];
tab[2] = taby[1] * tabx[0];
tab[3] = taby[1] * tabx[1];
float4 sum = 0;
sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3];
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
dst[dst_offset+dy*dstStep+dx] = sum;
}
}
__kernel void warpAffineCubic_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows,
int dst_cols, int dst_rows, int srcStep, int dstStep,
int src_offset, int dst_offset, __constant F * M, int threadCols )
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if( dx < threadCols && dy < dst_rows)
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
src_offset = (src_offset>>4);
dst_offset = (dst_offset>>4);
srcStep = (srcStep>>2);
dstStep = (dstStep>>2);
int X0 = rint(M[0] * dx * AB_SCALE);
int Y0 = rint(M[3] * dx * AB_SCALE);
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx = (short)(X0 >> INTER_BITS) - 1;
short sy = (short)(Y0 >> INTER_BITS) - 1;
short ay = (short)(Y0 & (INTER_TAB_SIZE-1));
short ax = (short)(X0 & (INTER_TAB_SIZE-1));
float4 v[16];
int i;
for(i=0; i<16; i++)
v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : (float4)0;
float tab[16];
float tab1y[4], tab1x[4];
float axx, ayy;
ayy = 1.f/INTER_TAB_SIZE * ay;
axx = 1.f/INTER_TAB_SIZE * ax;
interpolateCubic(ayy, tab1y);
interpolateCubic(axx, tab1x);
#pragma unroll 4
for( i=0; i<16; i++ )
{
tab[i] = tab1y[(i>>2)] * tab1x[(i&3)];
}
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows)
{
float4 sum = 0;
#pragma unroll 4
for ( i =0; i<16; i++ )
{
sum += v[i] * tab[i];
}
dst[dst_offset+dy*dstStep+dx] = sum;
}
}
}