2012-10-17 15:12:04 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
2017-11-05 21:48:40 +08:00
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
2012-10-17 15:12:04 +08:00
|
|
|
|
|
|
|
#define MESSAGE_ERROR_COUNT "Count non zero elements returned by OpenCV function is incorrect."
|
|
|
|
|
|
|
|
#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1
|
|
|
|
|
|
|
|
#define MAX_WIDTH 100
|
|
|
|
#define MAX_HEIGHT 100
|
|
|
|
|
|
|
|
class CV_CountNonZeroTest: public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_CountNonZeroTest();
|
|
|
|
~CV_CountNonZeroTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void run (int);
|
|
|
|
|
|
|
|
private:
|
|
|
|
float eps_32;
|
|
|
|
double eps_64;
|
|
|
|
Mat src;
|
|
|
|
int current_type;
|
|
|
|
|
|
|
|
void generate_src_data(cv::Size size, int type);
|
|
|
|
void generate_src_data(cv::Size size, int type, int count_non_zero);
|
|
|
|
void generate_src_stat_data(cv::Size size, int type, int distribution);
|
|
|
|
|
|
|
|
int get_count_non_zero();
|
|
|
|
|
|
|
|
void print_information(int right, int result);
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_CountNonZeroTest::CV_CountNonZeroTest(): eps_32(std::numeric_limits<float>::min()), eps_64(std::numeric_limits<double>::min()), src(Mat()), current_type(-1) {}
|
|
|
|
CV_CountNonZeroTest::~CV_CountNonZeroTest() {}
|
|
|
|
|
|
|
|
void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type)
|
|
|
|
{
|
|
|
|
src.create(size, CV_MAKETYPE(type, 1));
|
|
|
|
|
|
|
|
for (int j = 0; j < size.width; ++j)
|
|
|
|
for (int i = 0; i < size.height; ++i)
|
|
|
|
switch (type)
|
|
|
|
{
|
|
|
|
case CV_8U: { src.at<uchar>(i, j) = cv::randu<uchar>(); break; }
|
|
|
|
case CV_8S: { src.at<char>(i, j) = cv::randu<uchar>() - 128; break; }
|
|
|
|
case CV_16U: { src.at<ushort>(i, j) = cv::randu<ushort>(); break; }
|
|
|
|
case CV_16S: { src.at<short>(i, j) = cv::randu<short>(); break; }
|
|
|
|
case CV_32S: { src.at<int>(i, j) = cv::randu<int>(); break; }
|
|
|
|
case CV_32F: { src.at<float>(i, j) = cv::randu<float>(); break; }
|
|
|
|
case CV_64F: { src.at<double>(i, j) = cv::randu<double>(); break; }
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type, int count_non_zero)
|
|
|
|
{
|
|
|
|
src = Mat::zeros(size, CV_MAKETYPE(type, 1));
|
|
|
|
|
|
|
|
int n = 0; RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
while (n < count_non_zero)
|
|
|
|
{
|
|
|
|
int i = rng.next()%size.height, j = rng.next()%size.width;
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
{
|
|
|
|
case CV_8U: { if (!src.at<uchar>(i, j)) {src.at<uchar>(i, j) = cv::randu<uchar>(); n += (src.at<uchar>(i, j) > 0);} break; }
|
|
|
|
case CV_8S: { if (!src.at<char>(i, j)) {src.at<char>(i, j) = cv::randu<uchar>() - 128; n += abs(sign(src.at<char>(i, j)));} break; }
|
|
|
|
case CV_16U: { if (!src.at<ushort>(i, j)) {src.at<ushort>(i, j) = cv::randu<ushort>(); n += (src.at<ushort>(i, j) > 0);} break; }
|
|
|
|
case CV_16S: { if (!src.at<short>(i, j)) {src.at<short>(i, j) = cv::randu<short>(); n += abs(sign(src.at<short>(i, j)));} break; }
|
|
|
|
case CV_32S: { if (!src.at<int>(i, j)) {src.at<int>(i, j) = cv::randu<int>(); n += abs(sign(src.at<int>(i, j)));} break; }
|
|
|
|
case CV_32F: { if (fabs(src.at<float>(i, j)) <= eps_32) {src.at<float>(i, j) = cv::randu<float>(); n += (fabs(src.at<float>(i, j)) > eps_32);} break; }
|
|
|
|
case CV_64F: { if (fabs(src.at<double>(i, j)) <= eps_64) {src.at<double>(i, j) = cv::randu<double>(); n += (fabs(src.at<double>(i, j)) > eps_64);} break; }
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_CountNonZeroTest::generate_src_stat_data(cv::Size size, int type, int distribution)
|
|
|
|
{
|
|
|
|
src.create(size, CV_MAKETYPE(type, 1));
|
|
|
|
|
|
|
|
double mean = 0.0, sigma = 1.0;
|
|
|
|
double left = -1.0, right = 1.0;
|
|
|
|
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
if (distribution == RNG::NORMAL)
|
|
|
|
rng.fill(src, RNG::NORMAL, Scalar::all(mean), Scalar::all(sigma));
|
|
|
|
else if (distribution == RNG::UNIFORM)
|
|
|
|
rng.fill(src, RNG::UNIFORM, Scalar::all(left), Scalar::all(right));
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_CountNonZeroTest::get_count_non_zero()
|
|
|
|
{
|
|
|
|
int result = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < src.rows; ++i)
|
|
|
|
for (int j = 0; j < src.cols; ++j)
|
|
|
|
{
|
|
|
|
if (current_type == CV_8U) result += (src.at<uchar>(i, j) > 0);
|
|
|
|
else if (current_type == CV_8S) result += abs(sign(src.at<char>(i, j)));
|
|
|
|
else if (current_type == CV_16U) result += (src.at<ushort>(i, j) > 0);
|
|
|
|
else if (current_type == CV_16S) result += abs(sign(src.at<short>(i, j)));
|
|
|
|
else if (current_type == CV_32S) result += abs(sign(src.at<int>(i, j)));
|
|
|
|
else if (current_type == CV_32F) result += (fabs(src.at<float>(i, j)) > eps_32);
|
|
|
|
else result += (fabs(src.at<double>(i, j)) > eps_64);
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_CountNonZeroTest::print_information(int right, int result)
|
|
|
|
{
|
|
|
|
cout << endl; cout << "Checking for the work of countNonZero function..." << endl; cout << endl;
|
|
|
|
cout << "Type of Mat: ";
|
|
|
|
switch (current_type)
|
|
|
|
{
|
|
|
|
case 0: {cout << "CV_8U"; break;}
|
|
|
|
case 1: {cout << "CV_8S"; break;}
|
|
|
|
case 2: {cout << "CV_16U"; break;}
|
|
|
|
case 3: {cout << "CV_16S"; break;}
|
|
|
|
case 4: {cout << "CV_32S"; break;}
|
|
|
|
case 5: {cout << "CV_32F"; break;}
|
|
|
|
case 6: {cout << "CV_64F"; break;}
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
cout << "Number of rows: " << src.rows << " Number of cols: " << src.cols << endl;
|
|
|
|
cout << "True count non zero elements: " << right << " Result: " << result << endl;
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_CountNonZeroTest::run(int)
|
|
|
|
{
|
|
|
|
const size_t N = 1500;
|
|
|
|
|
|
|
|
for (int k = 1; k <= 3; ++k)
|
|
|
|
for (size_t i = 0; i < N; ++i)
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
int w = rng.next()%MAX_WIDTH + 1, h = rng.next()%MAX_HEIGHT + 1;
|
|
|
|
|
|
|
|
current_type = rng.next()%7;
|
|
|
|
|
|
|
|
switch (k)
|
|
|
|
{
|
|
|
|
case 1: {
|
|
|
|
generate_src_data(Size(w, h), current_type);
|
|
|
|
int right = get_count_non_zero(), result = countNonZero(src);
|
|
|
|
if (result != right)
|
|
|
|
{
|
|
|
|
cout << "Number of experiment: " << i << endl;
|
|
|
|
cout << "Method of data generation: RANDOM" << endl;
|
|
|
|
print_information(right, result);
|
2024-09-06 17:05:47 +08:00
|
|
|
CV_Error(cv::Error::StsError, MESSAGE_ERROR_COUNT);
|
2012-10-17 15:12:04 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case 2: {
|
|
|
|
int count_non_zero = rng.next()%(w*h);
|
|
|
|
generate_src_data(Size(w, h), current_type, count_non_zero);
|
|
|
|
int result = countNonZero(src);
|
|
|
|
if (result != count_non_zero)
|
|
|
|
{
|
|
|
|
cout << "Number of experiment: " << i << endl;
|
|
|
|
cout << "Method of data generation: HALF-RANDOM" << endl;
|
|
|
|
print_information(count_non_zero, result);
|
2024-09-06 17:05:47 +08:00
|
|
|
CV_Error(cv::Error::StsError, MESSAGE_ERROR_COUNT);
|
2012-10-17 15:12:04 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case 3: {
|
|
|
|
int distribution = cv::randu<uchar>()%2;
|
|
|
|
generate_src_stat_data(Size(w, h), current_type, distribution);
|
|
|
|
int right = get_count_non_zero(), result = countNonZero(src);
|
|
|
|
if (right != result)
|
|
|
|
{
|
|
|
|
cout << "Number of experiment: " << i << endl;
|
|
|
|
cout << "Method of data generation: STATISTIC" << endl;
|
|
|
|
print_information(right, result);
|
2024-09-06 17:05:47 +08:00
|
|
|
CV_Error(cv::Error::StsError, MESSAGE_ERROR_COUNT);
|
2012-10-17 15:12:04 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST (Core_CountNonZero, accuracy) { CV_CountNonZeroTest test; test.safe_run(); }
|
2017-05-23 16:43:19 +08:00
|
|
|
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
typedef testing::TestWithParam<tuple<int, int> > CountNonZeroND;
|
2017-05-23 16:43:19 +08:00
|
|
|
|
|
|
|
TEST_P (CountNonZeroND, ndim)
|
|
|
|
{
|
2017-11-05 21:48:40 +08:00
|
|
|
const int dims = get<0>(GetParam());
|
|
|
|
const int type = get<1>(GetParam());
|
2017-05-23 16:43:19 +08:00
|
|
|
const int ONE_SIZE = 5;
|
|
|
|
|
|
|
|
vector<int> sizes(dims);
|
2023-09-06 18:45:28 +08:00
|
|
|
std::fill(sizes.begin(), sizes.end(), ONE_SIZE);
|
2017-05-23 16:43:19 +08:00
|
|
|
|
|
|
|
Mat data(sizes, CV_MAKETYPE(type, 1));
|
|
|
|
data = 0;
|
|
|
|
EXPECT_EQ(0, cv::countNonZero(data));
|
|
|
|
data = Scalar::all(1);
|
2017-06-08 05:40:35 +08:00
|
|
|
int expected = static_cast<int>(pow(static_cast<float>(ONE_SIZE), dims));
|
|
|
|
EXPECT_EQ(expected, cv::countNonZero(data));
|
2017-05-23 16:43:19 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Core, CountNonZeroND,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Range(2, 9),
|
|
|
|
testing::Values(CV_8U, CV_8S, CV_32F)
|
|
|
|
)
|
|
|
|
);
|
2017-11-05 21:48:40 +08:00
|
|
|
|
2020-06-02 22:53:30 +08:00
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, cv::Size> > CountNonZeroBig;
|
|
|
|
|
|
|
|
TEST_P(CountNonZeroBig, /**/)
|
|
|
|
{
|
|
|
|
const int type = get<0>(GetParam());
|
|
|
|
const Size sz = get<1>(GetParam());
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cv::countNonZero(cv::Mat::zeros(sz, type)));
|
|
|
|
EXPECT_EQ(sz.area(), cv::countNonZero(cv::Mat::ones(sz, type)));
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Core, CountNonZeroBig,
|
|
|
|
testing::Combine(
|
|
|
|
testing::Values(CV_8UC1, CV_32FC1),
|
|
|
|
testing::Values(Size(1, 524190), Size(524190, 1), Size(3840, 2160))
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
2024-10-05 04:54:01 +08:00
|
|
|
typedef testing::TestWithParam<int> CountNonZero1D;
|
|
|
|
|
|
|
|
TEST_P(CountNonZero1D, /**/)
|
|
|
|
{
|
|
|
|
const int depth = GetParam();
|
|
|
|
int i, M = 112 + depth, N = 3 + depth;
|
|
|
|
std::vector<uint8_t> v(M);
|
|
|
|
int nz_ref = 0;
|
|
|
|
for (i = 0; i < M; i++) {
|
|
|
|
v[i] = (uint8_t)(rand() % 7 == 0);
|
|
|
|
nz_ref += v[i] != 0;
|
|
|
|
}
|
|
|
|
Mat mv;
|
|
|
|
Mat(v).convertTo(mv, depth);
|
|
|
|
EXPECT_EQ(mv.dims, 1);
|
|
|
|
EXPECT_EQ(mv.total(), M);
|
|
|
|
size_t esz = mv.elemSize();
|
|
|
|
// check countNonZero on a vector transformed to Mat inplace, e.g. on 1xM matrix
|
|
|
|
int nz0 = countNonZero(mv);
|
|
|
|
EXPECT_EQ(nz0, nz_ref);
|
|
|
|
// another method to get 1xM matrix, this time 2D matrix
|
|
|
|
int nz0_ = countNonZero(Mat(Size(M, 1), depth, mv.data));
|
|
|
|
EXPECT_EQ(nz0_, nz_ref);
|
|
|
|
// let's now transpose it and get Mx1
|
|
|
|
Mat m1 = mv.t();
|
|
|
|
int nz1 = countNonZero(m1);
|
|
|
|
EXPECT_EQ(nz1, nz_ref);
|
|
|
|
Mat mwide(M, N, mv.type());
|
|
|
|
randu(mwide, 0, 3);
|
|
|
|
int colidx = rand()%N;
|
|
|
|
Mat mcol = mwide.col(colidx);
|
|
|
|
EXPECT_EQ(mcol.data, mwide.data + colidx*esz);
|
|
|
|
// let's now embed this column into a wider matrix
|
|
|
|
// make sure it's copied inside, not reallocated.
|
|
|
|
m1.copyTo(mcol);
|
|
|
|
EXPECT_EQ(mcol.data, mwide.data + colidx*esz);
|
|
|
|
// now it's not continuous
|
|
|
|
EXPECT_EQ(mcol.isContinuous(), false);
|
|
|
|
int nz2 = countNonZero(mcol);
|
|
|
|
EXPECT_EQ(nz2, nz_ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Core, CountNonZero1D,
|
|
|
|
testing::Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32U, CV_32S, CV_64U, CV_64S, CV_32F, CV_64F, CV_16F, CV_16BF, CV_Bool)
|
|
|
|
);
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
}} // namespace
|