opencv/doc/opencv1/c/core_clustering.rst

313 lines
8.8 KiB
ReStructuredText
Raw Normal View History

2011-05-10 00:35:11 +08:00
Clustering
==========
.. highlight:: c
.. index:: KMeans2
.. _KMeans2:
KMeans2
-------
2011-05-10 00:35:11 +08:00
.. cfunction:: int cvKMeans2(const CvArr* samples, int nclusters, CvArr* labels, CvTermCriteria termcrit, int attempts=1, CvRNG* rng=0, int flags=0, CvArr* centers=0, double* compactness=0)
Splits set of vectors by a given number of clusters.
:param samples: Floating-point matrix of input samples, one row per sample
:param nclusters: Number of clusters to split the set by
:param labels: Output integer vector storing cluster indices for every sample
:param termcrit: Specifies maximum number of iterations and/or accuracy (distance the centers can move by between subsequent iterations)
:param attempts: How many times the algorithm is executed using different initial labelings. The algorithm returns labels that yield the best compactness (see the last function parameter)
:param rng: Optional external random number generator; can be used to fully control the function behaviour
:param flags: Can be 0 or ``CV_KMEANS_USE_INITIAL_LABELS`` . The latter
value means that during the first (and possibly the only) attempt, the
function uses the user-supplied labels as the initial approximation
instead of generating random labels. For the second and further attempts,
the function will use randomly generated labels in any case
:param centers: The optional output array of the cluster centers
:param compactness: The optional output parameter, which is computed as :math:`\sum_i ||\texttt{samples}_i - \texttt{centers}_{\texttt{labels}_i}||^2`
after every attempt; the best (minimum) value is chosen and the
corresponding labels are returned by the function. Basically, the
user can use only the core of the function, set the number of
attempts to 1, initialize labels each time using a custom algorithm
( ``flags=CV_KMEAN_USE_INITIAL_LABELS`` ) and, based on the output compactness
or any other criteria, choose the best clustering.
The function
``cvKMeans2``
implements a k-means algorithm that finds the
centers of
``nclusters``
clusters and groups the input samples
around the clusters. On output,
:math:`\texttt{labels}_i`
contains a cluster index for
samples stored in the i-th row of the
``samples``
matrix.
::
#include "cxcore.h"
#include "highgui.h"
void main( int argc, char** argv )
{
#define MAX_CLUSTERS 5
CvScalar color_tab[MAX_CLUSTERS];
IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
CvRNG rng = cvRNG(0xffffffff);
color_tab[0] = CV_RGB(255,0,0);
color_tab[1] = CV_RGB(0,255,0);
color_tab[2] = CV_RGB(100,100,255);
color_tab[3] = CV_RGB(255,0,255);
color_tab[4] = CV_RGB(255,255,0);
cvNamedWindow( "clusters", 1 );
for(;;)
{
int k, cluster_count = cvRandInt(&rng)
int i, sample_count = cvRandInt(&rng)
CvMat* points = cvCreateMat( sample_count, 1, CV_32FC2 );
CvMat* clusters = cvCreateMat( sample_count, 1, CV_32SC1 );
/* generate random sample from multigaussian distribution */
for( k = 0; k < cluster_count; k++ )
{
CvPoint center;
CvMat point_chunk;
center.x = cvRandInt(&rng)
center.y = cvRandInt(&rng)
cvGetRows( points,
&point_chunk,
k*sample_count/cluster_count,
(k == (cluster_count - 1)) ?
sample_count :
(k+1)*sample_count/cluster_count );
cvRandArr( &rng, &point_chunk, CV_RAND_NORMAL,
cvScalar(center.x,center.y,0,0),
cvScalar(img->width/6, img->height/6,0,0) );
}
/* shuffle samples */
for( i = 0; i < sample_count/2; i++ )
{
CvPoint2D32f* pt1 =
(CvPoint2D32f*)points->data.fl + cvRandInt(&rng)
CvPoint2D32f* pt2 =
(CvPoint2D32f*)points->data.fl + cvRandInt(&rng)
CvPoint2D32f temp;
CV_SWAP( *pt1, *pt2, temp );
}
cvKMeans2( points, cluster_count, clusters,
cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0 ));
cvZero( img );
for( i = 0; i < sample_count; i++ )
{
CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];
int cluster_idx = clusters->data.i[i];
cvCircle( img,
cvPointFrom32f(pt),
2,
color_tab[cluster_idx],
CV_FILLED );
}
cvReleaseMat( &points );
cvReleaseMat( &clusters );
cvShowImage( "clusters", img );
int key = cvWaitKey(0);
if( key == 27 )
break;
}
}
..
.. index:: SeqPartition
.. _SeqPartition:
SeqPartition
------------
2011-05-10 00:35:11 +08:00
.. cfunction:: int cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, CvSeq** labels, CvCmpFunc is_equal, void* userdata )
Splits a sequence into equivalency classes.
:param seq: The sequence to partition
:param storage: The storage block to store the sequence of equivalency classes. If it is NULL, the function uses ``seq->storage`` for output labels
:param labels: Ouput parameter. Double pointer to the sequence of 0-based labels of input sequence elements
:param is_equal: The relation function that should return non-zero if the two particular sequence elements are from the same class, and zero otherwise. The partitioning algorithm uses transitive closure of the relation function as an equivalency critria
:param userdata: Pointer that is transparently passed to the ``is_equal`` function
::
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);
..
The function
``cvSeqPartition``
implements a quadratic algorithm for
splitting a set into one or more equivalancy classes. The function
returns the number of equivalency classes.
::
#include "cxcore.h"
#include "highgui.h"
#include <stdio.h>
CvSeq* point_seq = 0;
IplImage* canvas = 0;
CvScalar* colors = 0;
int pos = 10;
int is_equal( const void* _a, const void* _b, void* userdata )
{
CvPoint a = *(const CvPoint*)_a;
CvPoint b = *(const CvPoint*)_b;
double threshold = *(double*)userdata;
return (double)((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y)) <=
threshold;
}
void on_track( int pos )
{
CvSeq* labels = 0;
double threshold = pos*pos;
int i, class_count = cvSeqPartition( point_seq,
0,
&labels,
is_equal,
&threshold );
printf("
cvZero( canvas );
for( i = 0; i < labels->total; i++ )
{
CvPoint pt = *(CvPoint*)cvGetSeqElem( point_seq, i );
CvScalar color = colors[*(int*)cvGetSeqElem( labels, i )];
cvCircle( canvas, pt, 1, color, -1 );
}
cvShowImage( "points", canvas );
}
int main( int argc, char** argv )
{
CvMemStorage* storage = cvCreateMemStorage(0);
point_seq = cvCreateSeq( CV_32SC2,
sizeof(CvSeq),
sizeof(CvPoint),
storage );
CvRNG rng = cvRNG(0xffffffff);
int width = 500, height = 500;
int i, count = 1000;
canvas = cvCreateImage( cvSize(width,height), 8, 3 );
colors = (CvScalar*)cvAlloc( count*sizeof(colors[0]) );
for( i = 0; i < count; i++ )
{
CvPoint pt;
int icolor;
pt.x = cvRandInt( &rng )
pt.y = cvRandInt( &rng )
cvSeqPush( point_seq, &pt );
icolor = cvRandInt( &rng ) | 0x00404040;
colors[i] = CV_RGB(icolor & 255,
(icolor >> 8)&255,
(icolor >> 16)&255);
}
cvNamedWindow( "points", 1 );
cvCreateTrackbar( "threshold", "points", &pos, 50, on_track );
on_track(pos);
cvWaitKey(0);
return 0;
}
..