mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
257 lines
8.6 KiB
C++
257 lines
8.6 KiB
C++
|
/*
|
||
|
* one_way_sample.cpp
|
||
|
* outlet_detection
|
||
|
*
|
||
|
* Created by Victor Eruhimov on 8/5/09.
|
||
|
* Copyright 2009 Argus Corp. All rights reserved.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <cv.h>
|
||
|
#include <cvaux.h>
|
||
|
#include <highgui.h>
|
||
|
|
||
|
#include <string>
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1,
|
||
|
IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx);
|
||
|
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
|
||
|
const char* pca_desc_filename, CvSize patch_size);
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
const char pca_high_filename[] = "pca_hr.yml";
|
||
|
const char pca_low_filename[] = "pca_lr.yml";
|
||
|
const char pca_desc_filename[] = "pca_descriptors.yml";
|
||
|
const CvSize patch_size = cvSize(24, 24);
|
||
|
const int pose_count = 50;
|
||
|
|
||
|
if(argc != 3 && argc != 4)
|
||
|
{
|
||
|
printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n");
|
||
|
printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
std::string path_name = argv[1];
|
||
|
std::string img1_name = path_name + "/" + std::string(argv[2]);
|
||
|
std::string img2_name = path_name + "/" + std::string(argv[3]);
|
||
|
|
||
|
CvFileStorage* fs = cvOpenFileStorage("pca_hr.yml", NULL, CV_STORAGE_READ);
|
||
|
if(fs == NULL)
|
||
|
{
|
||
|
printf("PCA data is not found, starting training...\n");
|
||
|
generatePCADescriptors(path_name.c_str(), pca_low_filename, pca_high_filename, pca_desc_filename, patch_size);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cvReleaseFileStorage(&fs);
|
||
|
}
|
||
|
|
||
|
|
||
|
printf("Reading the images...\n");
|
||
|
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
||
|
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
||
|
|
||
|
// extract keypoints from the first image
|
||
|
vector<KeyPoint> keypoints1;
|
||
|
SURF surf_extractor(5.0e3);
|
||
|
// printf("Extracting keypoints\n");
|
||
|
surf_extractor(img1, Mat(), keypoints1);
|
||
|
printf("Extracted %d keypoints...\n", (int)keypoints1.size());
|
||
|
|
||
|
printf("Training one way descriptors...");
|
||
|
// create descriptors
|
||
|
OneWayDescriptorBase descriptors(patch_size, pose_count, ".", pca_low_filename, pca_high_filename, pca_desc_filename);
|
||
|
descriptors.CreateDescriptorsFromImage(img1, keypoints1);
|
||
|
printf("done\n");
|
||
|
|
||
|
// extract keypoints from the second image
|
||
|
vector<KeyPoint> keypoints2;
|
||
|
surf_extractor(img2, Mat(), keypoints2);
|
||
|
printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
|
||
|
|
||
|
|
||
|
printf("Finding nearest neighbors...");
|
||
|
// find NN for each of keypoints2 in keypoints1
|
||
|
vector<int> desc_idx;
|
||
|
desc_idx.resize(keypoints2.size());
|
||
|
for(size_t i = 0; i < keypoints2.size(); i++)
|
||
|
{
|
||
|
int pose_idx = 0;
|
||
|
float distance = 0;
|
||
|
descriptors.FindDescriptor(img2, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
|
||
|
}
|
||
|
printf("done\n");
|
||
|
|
||
|
IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);
|
||
|
|
||
|
cvNamedWindow("correspondences", 1);
|
||
|
cvShowImage("correspondences", img_corr);
|
||
|
cvWaitKey(0);
|
||
|
|
||
|
cvReleaseImage(&img1);
|
||
|
cvReleaseImage(&img2);
|
||
|
cvReleaseImage(&img_corr);
|
||
|
}
|
||
|
|
||
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx)
|
||
|
{
|
||
|
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)), IPL_DEPTH_8U, 3);
|
||
|
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
|
||
|
cvCvtColor(img1, img_corr, CV_GRAY2RGB);
|
||
|
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
|
||
|
cvCvtColor(img2, img_corr, CV_GRAY2RGB);
|
||
|
cvResetImageROI(img_corr);
|
||
|
|
||
|
for(size_t i = 0; i < features1.size(); i++)
|
||
|
{
|
||
|
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
|
||
|
}
|
||
|
|
||
|
for(size_t i = 0; i < features2.size(); i++)
|
||
|
{
|
||
|
CvPoint pt = cvPoint(features2[i].pt.x + img1->width, features2[i].pt.y);
|
||
|
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
|
||
|
cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0));
|
||
|
}
|
||
|
|
||
|
return img_corr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* pca_features
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void savePCAFeatures(const char* filename, CvMat* avg, CvMat* eigenvectors)
|
||
|
{
|
||
|
CvMemStorage* storage = cvCreateMemStorage();
|
||
|
|
||
|
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
|
||
|
cvWrite(fs, "avg", avg);
|
||
|
cvWrite(fs, "eigenvectors", eigenvectors);
|
||
|
cvReleaseFileStorage(&fs);
|
||
|
|
||
|
cvReleaseMemStorage(&storage);
|
||
|
}
|
||
|
|
||
|
void calcPCAFeatures(vector<IplImage*>& patches, const char* filename, CvMat** avg, CvMat** eigenvectors)
|
||
|
{
|
||
|
int width = patches[0]->width;
|
||
|
int height = patches[0]->height;
|
||
|
int length = width*height;
|
||
|
int patch_count = (int)patches.size();
|
||
|
|
||
|
CvMat* data = cvCreateMat(patch_count, length, CV_32FC1);
|
||
|
*avg = cvCreateMat(1, length, CV_32FC1);
|
||
|
CvMat* eigenvalues = cvCreateMat(1, length, CV_32FC1);
|
||
|
*eigenvectors = cvCreateMat(length, length, CV_32FC1);
|
||
|
|
||
|
for(int i = 0; i < patch_count; i++)
|
||
|
{
|
||
|
float sum = cvSum(patches[i]).val[0];
|
||
|
for(int y = 0; y < height; y++)
|
||
|
{
|
||
|
for(int x = 0; x < width; x++)
|
||
|
{
|
||
|
*((float*)(data->data.ptr + data->step*i) + y*width + x) = (float)(unsigned char)patches[i]->imageData[y*patches[i]->widthStep + x]/sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printf("Calculating PCA...");
|
||
|
cvCalcPCA(data, *avg, eigenvalues, *eigenvectors, CV_PCA_DATA_AS_ROW);
|
||
|
printf("done\n");
|
||
|
|
||
|
// save pca data
|
||
|
savePCAFeatures(filename, *avg, *eigenvectors);
|
||
|
|
||
|
cvReleaseMat(&data);
|
||
|
cvReleaseMat(&eigenvalues);
|
||
|
}
|
||
|
|
||
|
|
||
|
void loadPCAFeatures(const char* path, vector<IplImage*>& patches, CvSize patch_size)
|
||
|
{
|
||
|
const int file_count = 2;
|
||
|
for(int i = 0; i < file_count; i++)
|
||
|
{
|
||
|
char buf[1024];
|
||
|
sprintf(buf, "%s/one_way_train_%04d.jpg", path, i);
|
||
|
printf("Reading image %s...", buf);
|
||
|
IplImage* img = cvLoadImage(buf, CV_LOAD_IMAGE_GRAYSCALE);
|
||
|
printf("done\n");
|
||
|
|
||
|
vector<KeyPoint> features;
|
||
|
SURF surf_extractor(1.0f);
|
||
|
printf("Extracting SURF features...");
|
||
|
surf_extractor(img, Mat(), features);
|
||
|
printf("done\n");
|
||
|
|
||
|
for(int j = 0; j < (int)features.size(); j++)
|
||
|
{
|
||
|
int patch_width = patch_size.width;
|
||
|
int patch_height = patch_size.height;
|
||
|
|
||
|
CvPoint center = features[j].pt;
|
||
|
|
||
|
CvRect roi = cvRect(center.x - patch_width/2, center.y - patch_height/2, patch_width, patch_height);
|
||
|
cvSetImageROI(img, roi);
|
||
|
roi = cvGetImageROI(img);
|
||
|
if(roi.width != patch_width || roi.height != patch_height)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
IplImage* patch = cvCreateImage(cvSize(patch_width, patch_height), IPL_DEPTH_8U, 1);
|
||
|
cvCopy(img, patch);
|
||
|
patches.push_back(patch);
|
||
|
cvResetImageROI(img);
|
||
|
|
||
|
}
|
||
|
|
||
|
printf("Completed file %d, extracted %d features\n", i, (int)features.size());
|
||
|
|
||
|
cvReleaseImage(&img);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void generatePCAFeatures(const char* img_filename, const char* pca_filename, CvSize patch_size, CvMat** avg, CvMat** eigenvectors)
|
||
|
{
|
||
|
vector<IplImage*> patches;
|
||
|
loadPCAFeatures(img_filename, patches, patch_size);
|
||
|
calcPCAFeatures(patches, pca_filename, avg, eigenvectors);
|
||
|
}
|
||
|
|
||
|
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
|
||
|
const char* pca_desc_filename, CvSize patch_size)
|
||
|
{
|
||
|
CvMat* avg_hr;
|
||
|
CvMat* eigenvectors_hr;
|
||
|
generatePCAFeatures(img_path, pca_high_filename, patch_size, &avg_hr, &eigenvectors_hr);
|
||
|
|
||
|
CvMat* avg_lr;
|
||
|
CvMat* eigenvectors_lr;
|
||
|
generatePCAFeatures(img_path, pca_low_filename, cvSize(patch_size.width/2, patch_size.height/2),
|
||
|
&avg_lr, &eigenvectors_lr);
|
||
|
|
||
|
const int pose_count = 500;
|
||
|
OneWayDescriptorBase descriptors(patch_size, pose_count);
|
||
|
descriptors.SetPCAHigh(avg_hr, eigenvectors_hr);
|
||
|
descriptors.SetPCALow(avg_lr, eigenvectors_lr);
|
||
|
|
||
|
printf("Calculating %d PCA descriptors (you can grab a coffee, this will take a while)...\n", descriptors.GetPCADimHigh());
|
||
|
descriptors.InitializePoseTransforms();
|
||
|
descriptors.CreatePCADescriptors();
|
||
|
descriptors.SavePCADescriptors(pca_desc_filename);
|
||
|
|
||
|
cvReleaseMat(&avg_hr);
|
||
|
cvReleaseMat(&eigenvectors_hr);
|
||
|
cvReleaseMat(&avg_lr);
|
||
|
cvReleaseMat(&eigenvectors_lr);
|
||
|
}
|