opencv/modules/objdetect/perf/perf_aruco.cpp

286 lines
12 KiB
C++
Raw Normal View History

2022-12-28 22:28:59 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "perf_precomp.hpp"
2023-01-09 19:08:02 +08:00
#include "opencv2/3d.hpp"
2022-12-28 22:28:59 +08:00
namespace opencv_test {
using namespace perf;
typedef tuple<bool, int> UseArucoParams;
typedef TestBaseWithParam<UseArucoParams> EstimateAruco;
#define ESTIMATE_PARAMS Combine(Values(false, true), Values(-1))
static double deg2rad(double deg) { return deg * CV_PI / 180.; }
class MarkerPainter
{
private:
int imgMarkerSize = 0;
Mat cameraMatrix;
public:
MarkerPainter(const int size) {
setImgMarkerSize(size);
}
void setImgMarkerSize(const int size) {
imgMarkerSize = size;
cameraMatrix = Mat::eye(3, 3, CV_64FC1);
cameraMatrix.at<double>(0, 0) = cameraMatrix.at<double>(1, 1) = imgMarkerSize;
cameraMatrix.at<double>(0, 2) = imgMarkerSize / 2.0;
cameraMatrix.at<double>(1, 2) = imgMarkerSize / 2.0;
}
static std::pair<Mat, Mat> getSyntheticRT(double yaw, double pitch, double distance) {
auto rvec_tvec = std::make_pair(Mat(3, 1, CV_64FC1), Mat(3, 1, CV_64FC1));
Mat& rvec = rvec_tvec.first;
Mat& tvec = rvec_tvec.second;
// Rvec
// first put the Z axis aiming to -X (like the camera axis system)
Mat rotZ(3, 1, CV_64FC1);
rotZ.ptr<double>(0)[0] = 0;
rotZ.ptr<double>(0)[1] = 0;
rotZ.ptr<double>(0)[2] = -0.5 * CV_PI;
Mat rotX(3, 1, CV_64FC1);
rotX.ptr<double>(0)[0] = 0.5 * CV_PI;
rotX.ptr<double>(0)[1] = 0;
rotX.ptr<double>(0)[2] = 0;
Mat camRvec, camTvec;
composeRT(rotZ, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotX, Mat(3, 1, CV_64FC1, Scalar::all(0)),
camRvec, camTvec);
// now pitch and yaw angles
Mat rotPitch(3, 1, CV_64FC1);
rotPitch.ptr<double>(0)[0] = 0;
rotPitch.ptr<double>(0)[1] = pitch;
rotPitch.ptr<double>(0)[2] = 0;
Mat rotYaw(3, 1, CV_64FC1);
rotYaw.ptr<double>(0)[0] = yaw;
rotYaw.ptr<double>(0)[1] = 0;
rotYaw.ptr<double>(0)[2] = 0;
composeRT(rotPitch, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotYaw,
Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec);
// compose both rotations
composeRT(camRvec, Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec,
Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec);
// Tvec, just move in z (camera) direction the specific distance
tvec.ptr<double>(0)[0] = 0.;
tvec.ptr<double>(0)[1] = 0.;
tvec.ptr<double>(0)[2] = distance;
return rvec_tvec;
}
std::pair<Mat, vector<Point2f> > getProjectMarker(int id, double yaw, double pitch,
const aruco::DetectorParameters& parameters,
const aruco::Dictionary& dictionary) {
auto marker_corners = std::make_pair(Mat(imgMarkerSize, imgMarkerSize, CV_8UC1, Scalar::all(255)), vector<Point2f>());
Mat& img = marker_corners.first;
vector<Point2f>& corners = marker_corners.second;
// canonical image
const int markerSizePixels = static_cast<int>(imgMarkerSize/sqrt(2.f));
aruco::generateImageMarker(dictionary, id, markerSizePixels, img, parameters.markerBorderBits);
// get rvec and tvec for the perspective
const double distance = 0.1;
auto rvec_tvec = MarkerPainter::getSyntheticRT(yaw, pitch, distance);
Mat& rvec = rvec_tvec.first;
Mat& tvec = rvec_tvec.second;
const float markerLength = 0.05f;
vector<Point3f> markerObjPoints;
markerObjPoints.emplace_back(Point3f(-markerLength / 2.f, +markerLength / 2.f, 0));
markerObjPoints.emplace_back(markerObjPoints[0] + Point3f(markerLength, 0, 0));
markerObjPoints.emplace_back(markerObjPoints[0] + Point3f(markerLength, -markerLength, 0));
markerObjPoints.emplace_back(markerObjPoints[0] + Point3f(0, -markerLength, 0));
// project markers and draw them
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
projectPoints(markerObjPoints, rvec, tvec, cameraMatrix, distCoeffs, corners);
vector<Point2f> originalCorners;
originalCorners.emplace_back(Point2f(0.f, 0.f));
originalCorners.emplace_back(originalCorners[0]+Point2f((float)markerSizePixels, 0));
originalCorners.emplace_back(originalCorners[0]+Point2f((float)markerSizePixels, (float)markerSizePixels));
originalCorners.emplace_back(originalCorners[0]+Point2f(0, (float)markerSizePixels));
Mat transformation = getPerspectiveTransform(originalCorners, corners);
warpPerspective(img, img, transformation, Size(imgMarkerSize, imgMarkerSize), INTER_NEAREST, BORDER_CONSTANT,
Scalar::all(255));
return marker_corners;
}
std::pair<Mat, map<int, vector<Point2f> > > getProjectMarkersTile(const int numMarkers,
const aruco::DetectorParameters& params,
const aruco::Dictionary& dictionary) {
Mat tileImage(imgMarkerSize*numMarkers, imgMarkerSize*numMarkers, CV_8UC1, Scalar::all(255));
map<int, vector<Point2f> > idCorners;
int iter = 0, pitch = 0, yaw = 0;
for (int i = 0; i < numMarkers; i++) {
for (int j = 0; j < numMarkers; j++) {
int currentId = iter;
auto marker_corners = getProjectMarker(currentId, deg2rad(70+yaw), deg2rad(pitch), params, dictionary);
Point2i startPoint(j*imgMarkerSize, i*imgMarkerSize);
Mat tmp_roi = tileImage(Rect(startPoint.x, startPoint.y, imgMarkerSize, imgMarkerSize));
marker_corners.first.copyTo(tmp_roi);
for (Point2f& point: marker_corners.second)
point += static_cast<Point2f>(startPoint);
idCorners[currentId] = marker_corners.second;
auto test = idCorners[currentId];
yaw = (yaw + 10) % 51; // 70+yaw >= 70 && 70+yaw <= 120
iter++;
}
pitch = (pitch + 60) % 360;
}
return std::make_pair(tileImage, idCorners);
}
};
static inline double getMaxDistance(map<int, vector<Point2f> > &golds, const vector<int>& ids,
const vector<vector<Point2f> >& corners) {
std::map<int, double> mapDist;
for (const auto& el : golds)
mapDist[el.first] = std::numeric_limits<double>::max();
for (size_t i = 0; i < ids.size(); i++) {
int id = ids[i];
const auto gold_corners = golds.find(id);
if (gold_corners != golds.end()) {
double distance = 0.;
for (int c = 0; c < 4; c++)
distance = std::max(distance, cv::norm(gold_corners->second[c] - corners[i][c]));
mapDist[id] = distance;
}
}
return std::max_element(std::begin(mapDist), std::end(mapDist),
[](const pair<int, double>& p1, const pair<int, double>& p2){return p1.second < p2.second;})->second;
}
PERF_TEST_P(EstimateAruco, ArucoFirst, ESTIMATE_PARAMS) {
UseArucoParams testParams = GetParam();
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
aruco::DetectorParameters detectorParams;
detectorParams.minDistanceToBorder = 1;
detectorParams.markerBorderBits = 1;
detectorParams.cornerRefinementMethod = cv::aruco::CORNER_REFINE_SUBPIX;
const int markerSize = 100;
const int numMarkersInRow = 9;
//USE_ARUCO3
detectorParams.useAruco3Detection = get<0>(testParams);
if (detectorParams.useAruco3Detection) {
detectorParams.minSideLengthCanonicalImg = 32;
detectorParams.minMarkerLengthRatioOriginalImg = 0.04f / numMarkersInRow;
}
aruco::ArucoDetector detector(dictionary, detectorParams);
MarkerPainter painter(markerSize);
auto image_map = painter.getProjectMarkersTile(numMarkersInRow, detectorParams, dictionary);
// detect markers
vector<vector<Point2f> > corners;
vector<int> ids;
TEST_CYCLE() {
detector.detectMarkers(image_map.first, corners, ids);
}
ASSERT_EQ(numMarkersInRow*numMarkersInRow, static_cast<int>(ids.size()));
double maxDistance = getMaxDistance(image_map.second, ids, corners);
ASSERT_LT(maxDistance, 3.);
SANITY_CHECK_NOTHING();
}
PERF_TEST_P(EstimateAruco, ArucoSecond, ESTIMATE_PARAMS) {
UseArucoParams testParams = GetParam();
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
aruco::DetectorParameters detectorParams;
detectorParams.minDistanceToBorder = 1;
detectorParams.markerBorderBits = 1;
detectorParams.cornerRefinementMethod = cv::aruco::CORNER_REFINE_SUBPIX;
//USE_ARUCO3
detectorParams.useAruco3Detection = get<0>(testParams);
if (detectorParams.useAruco3Detection) {
detectorParams.minSideLengthCanonicalImg = 64;
detectorParams.minMarkerLengthRatioOriginalImg = 0.f;
}
aruco::ArucoDetector detector(dictionary, detectorParams);
const int markerSize = 200;
const int numMarkersInRow = 11;
MarkerPainter painter(markerSize);
auto image_map = painter.getProjectMarkersTile(numMarkersInRow, detectorParams, dictionary);
// detect markers
vector<vector<Point2f> > corners;
vector<int> ids;
TEST_CYCLE() {
detector.detectMarkers(image_map.first, corners, ids);
}
ASSERT_EQ(numMarkersInRow*numMarkersInRow, static_cast<int>(ids.size()));
double maxDistance = getMaxDistance(image_map.second, ids, corners);
ASSERT_LT(maxDistance, 3.);
SANITY_CHECK_NOTHING();
}
struct Aruco3Params {
bool useAruco3Detection = false;
float minMarkerLengthRatioOriginalImg = 0.f;
int minSideLengthCanonicalImg = 0;
Aruco3Params(bool useAruco3, float minMarkerLen, int minSideLen): useAruco3Detection(useAruco3),
minMarkerLengthRatioOriginalImg(minMarkerLen),
minSideLengthCanonicalImg(minSideLen) {}
friend std::ostream& operator<<(std::ostream& os, const Aruco3Params& d) {
os << d.useAruco3Detection << " " << d.minMarkerLengthRatioOriginalImg << " " << d.minSideLengthCanonicalImg;
return os;
}
};
typedef tuple<Aruco3Params, pair<int, int>> ArucoTestParams;
typedef TestBaseWithParam<ArucoTestParams> EstimateLargeAruco;
#define ESTIMATE_FHD_PARAMS Combine(Values(Aruco3Params(false, 0.f, 0), Aruco3Params(true, 0.f, 32), \
Aruco3Params(true, 0.015f, 32), Aruco3Params(true, 0.f, 16), Aruco3Params(true, 0.0069f, 16)), \
Values(std::make_pair(1440, 1), std::make_pair(480, 3), std::make_pair(144, 10)))
PERF_TEST_P(EstimateLargeAruco, ArucoFHD, ESTIMATE_FHD_PARAMS) {
ArucoTestParams testParams = GetParam();
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
aruco::DetectorParameters detectorParams;
detectorParams.minDistanceToBorder = 1;
detectorParams.markerBorderBits = 1;
detectorParams.cornerRefinementMethod = cv::aruco::CORNER_REFINE_SUBPIX;
//USE_ARUCO3
detectorParams.useAruco3Detection = get<0>(testParams).useAruco3Detection;
if (detectorParams.useAruco3Detection) {
detectorParams.minSideLengthCanonicalImg = get<0>(testParams).minSideLengthCanonicalImg;
detectorParams.minMarkerLengthRatioOriginalImg = get<0>(testParams).minMarkerLengthRatioOriginalImg;
}
aruco::ArucoDetector detector(dictionary, detectorParams);
const int markerSize = get<1>(testParams).first; // 1440 or 480 or 144
const int numMarkersInRow = get<1>(testParams).second; // 1 or 3 or 144
MarkerPainter painter(markerSize); // num pixels is 1440x1440 as in FHD 1920x1080
auto image_map = painter.getProjectMarkersTile(numMarkersInRow, detectorParams, dictionary);
// detect markers
vector<vector<Point2f> > corners;
vector<int> ids;
TEST_CYCLE()
{
detector.detectMarkers(image_map.first, corners, ids);
}
ASSERT_EQ(numMarkersInRow*numMarkersInRow, static_cast<int>(ids.size()));
double maxDistance = getMaxDistance(image_map.second, ids, corners);
ASSERT_LT(maxDistance, 3.);
SANITY_CHECK_NOTHING();
}
}