mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
307 lines
10 KiB
C++
307 lines
10 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef __OPENCV_OBJDETECT_HPP__
|
||
|
#define __OPENCV_OBJDETECT_HPP__
|
||
|
|
||
|
#include "opencv2/core/core.hpp"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Haar-like Object Detection functions *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
#define CV_HAAR_MAGIC_VAL 0x42500000
|
||
|
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
|
||
|
|
||
|
#define CV_IS_HAAR_CLASSIFIER( haar ) \
|
||
|
((haar) != NULL && \
|
||
|
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
|
||
|
|
||
|
#define CV_HAAR_FEATURE_MAX 3
|
||
|
|
||
|
typedef struct CvHaarFeature
|
||
|
{
|
||
|
int tilted;
|
||
|
struct
|
||
|
{
|
||
|
CvRect r;
|
||
|
float weight;
|
||
|
} rect[CV_HAAR_FEATURE_MAX];
|
||
|
} CvHaarFeature;
|
||
|
|
||
|
typedef struct CvHaarClassifier
|
||
|
{
|
||
|
int count;
|
||
|
CvHaarFeature* haar_feature;
|
||
|
float* threshold;
|
||
|
int* left;
|
||
|
int* right;
|
||
|
float* alpha;
|
||
|
} CvHaarClassifier;
|
||
|
|
||
|
typedef struct CvHaarStageClassifier
|
||
|
{
|
||
|
int count;
|
||
|
float threshold;
|
||
|
CvHaarClassifier* classifier;
|
||
|
|
||
|
int next;
|
||
|
int child;
|
||
|
int parent;
|
||
|
} CvHaarStageClassifier;
|
||
|
|
||
|
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
|
||
|
|
||
|
typedef struct CvHaarClassifierCascade
|
||
|
{
|
||
|
int flags;
|
||
|
int count;
|
||
|
CvSize orig_window_size;
|
||
|
CvSize real_window_size;
|
||
|
double scale;
|
||
|
CvHaarStageClassifier* stage_classifier;
|
||
|
CvHidHaarClassifierCascade* hid_cascade;
|
||
|
} CvHaarClassifierCascade;
|
||
|
|
||
|
typedef struct CvAvgComp
|
||
|
{
|
||
|
CvRect rect;
|
||
|
int neighbors;
|
||
|
} CvAvgComp;
|
||
|
|
||
|
/* Loads haar classifier cascade from a directory.
|
||
|
It is obsolete: convert your cascade to xml and use cvLoad instead */
|
||
|
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
|
||
|
const char* directory, CvSize orig_window_size);
|
||
|
|
||
|
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
|
||
|
|
||
|
#define CV_HAAR_DO_CANNY_PRUNING 1
|
||
|
#define CV_HAAR_SCALE_IMAGE 2
|
||
|
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
|
||
|
#define CV_HAAR_DO_ROUGH_SEARCH 8
|
||
|
|
||
|
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
|
||
|
CvHaarClassifierCascade* cascade,
|
||
|
CvMemStorage* storage, double scale_factor CV_DEFAULT(1.1),
|
||
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
||
|
CvSize min_size CV_DEFAULT(cvSize(0,0)));
|
||
|
|
||
|
/* sets images for haar classifier cascade */
|
||
|
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
|
||
|
const CvArr* sum, const CvArr* sqsum,
|
||
|
const CvArr* tilted_sum, double scale );
|
||
|
|
||
|
/* runs the cascade on the specified window */
|
||
|
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
||
|
CvPoint pt, int start_stage CV_DEFAULT(0));
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
///////////////////////////// Object Detection ////////////////////////////
|
||
|
|
||
|
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps=0.2);
|
||
|
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& weights, int groupThreshold, double eps=0.2);
|
||
|
|
||
|
class CV_EXPORTS FeatureEvaluator
|
||
|
{
|
||
|
public:
|
||
|
enum { HAAR = 0, LBP = 1 };
|
||
|
virtual ~FeatureEvaluator();
|
||
|
virtual bool read(const FileNode& node);
|
||
|
virtual Ptr<FeatureEvaluator> clone() const;
|
||
|
virtual int getFeatureType() const;
|
||
|
|
||
|
virtual bool setImage(const Mat&, Size origWinSize);
|
||
|
virtual bool setWindow(Point p);
|
||
|
|
||
|
virtual double calcOrd(int featureIdx) const;
|
||
|
virtual int calcCat(int featureIdx) const;
|
||
|
|
||
|
static Ptr<FeatureEvaluator> create(int type);
|
||
|
};
|
||
|
|
||
|
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
|
||
|
|
||
|
class CV_EXPORTS CascadeClassifier
|
||
|
{
|
||
|
public:
|
||
|
struct CV_EXPORTS DTreeNode
|
||
|
{
|
||
|
int featureIdx;
|
||
|
float threshold; // for ordered features only
|
||
|
int left;
|
||
|
int right;
|
||
|
};
|
||
|
|
||
|
struct CV_EXPORTS DTree
|
||
|
{
|
||
|
int nodeCount;
|
||
|
};
|
||
|
|
||
|
struct CV_EXPORTS Stage
|
||
|
{
|
||
|
int first;
|
||
|
int ntrees;
|
||
|
float threshold;
|
||
|
};
|
||
|
|
||
|
enum { BOOST = 0 };
|
||
|
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
|
||
|
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
|
||
|
|
||
|
CascadeClassifier();
|
||
|
CascadeClassifier(const string& filename);
|
||
|
~CascadeClassifier();
|
||
|
|
||
|
bool empty() const;
|
||
|
bool load(const string& filename);
|
||
|
bool read(const FileNode& node);
|
||
|
void detectMultiScale( const Mat& image,
|
||
|
vector<Rect>& objects,
|
||
|
double scaleFactor=1.1,
|
||
|
int minNeighbors=3, int flags=0,
|
||
|
Size minSize=Size());
|
||
|
|
||
|
bool setImage( Ptr<FeatureEvaluator>&, const Mat& );
|
||
|
int runAt( Ptr<FeatureEvaluator>&, Point );
|
||
|
|
||
|
bool is_stump_based;
|
||
|
|
||
|
int stageType;
|
||
|
int featureType;
|
||
|
int ncategories;
|
||
|
Size origWinSize;
|
||
|
|
||
|
vector<Stage> stages;
|
||
|
vector<DTree> classifiers;
|
||
|
vector<DTreeNode> nodes;
|
||
|
vector<float> leaves;
|
||
|
vector<int> subsets;
|
||
|
|
||
|
Ptr<FeatureEvaluator> feval;
|
||
|
Ptr<CvHaarClassifierCascade> oldCascade;
|
||
|
};
|
||
|
|
||
|
|
||
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||
|
|
||
|
struct CV_EXPORTS HOGDescriptor
|
||
|
{
|
||
|
public:
|
||
|
enum { L2Hys=0 };
|
||
|
|
||
|
HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
|
||
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
||
|
histogramNormType(L2Hys), L2HysThreshold(0.2), gammaCorrection(true)
|
||
|
{}
|
||
|
|
||
|
HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
|
||
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
|
||
|
int _histogramNormType=L2Hys, double _L2HysThreshold=0.2, bool _gammaCorrection=false)
|
||
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
|
||
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
|
||
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
|
||
|
gammaCorrection(_gammaCorrection)
|
||
|
{}
|
||
|
|
||
|
HOGDescriptor(const String& filename)
|
||
|
{
|
||
|
load(filename);
|
||
|
}
|
||
|
|
||
|
virtual ~HOGDescriptor() {}
|
||
|
|
||
|
size_t getDescriptorSize() const;
|
||
|
bool checkDetectorSize() const;
|
||
|
double getWinSigma() const;
|
||
|
|
||
|
virtual void setSVMDetector(const vector<float>& _svmdetector);
|
||
|
|
||
|
virtual bool load(const String& filename, const String& objname=String());
|
||
|
virtual void save(const String& filename, const String& objname=String()) const;
|
||
|
|
||
|
virtual void compute(const Mat& img,
|
||
|
vector<float>& descriptors,
|
||
|
Size winStride=Size(), Size padding=Size(),
|
||
|
const vector<Point>& locations=vector<Point>()) const;
|
||
|
virtual void detect(const Mat& img, vector<Point>& foundLocations,
|
||
|
double hitThreshold=0, Size winStride=Size(),
|
||
|
Size padding=Size(),
|
||
|
const vector<Point>& searchLocations=vector<Point>()) const;
|
||
|
virtual void detectMultiScale(const Mat& img, vector<Rect>& foundLocations,
|
||
|
double hitThreshold=0, Size winStride=Size(),
|
||
|
Size padding=Size(), double scale=1.05,
|
||
|
int groupThreshold=2) const;
|
||
|
virtual void computeGradient(const Mat& img, Mat& grad, Mat& angleOfs,
|
||
|
Size paddingTL=Size(), Size paddingBR=Size()) const;
|
||
|
|
||
|
static vector<float> getDefaultPeopleDetector();
|
||
|
|
||
|
Size winSize;
|
||
|
Size blockSize;
|
||
|
Size blockStride;
|
||
|
Size cellSize;
|
||
|
int nbins;
|
||
|
int derivAperture;
|
||
|
double winSigma;
|
||
|
int histogramNormType;
|
||
|
double L2HysThreshold;
|
||
|
bool gammaCorrection;
|
||
|
vector<float> svmDetector;
|
||
|
};
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#endif
|