2014-11-27 20:39:05 +08:00
|
|
|
Feature Description {#tutorial_feature_description}
|
|
|
|
===================
|
|
|
|
|
|
|
|
Goal
|
|
|
|
----
|
|
|
|
|
|
|
|
In this tutorial you will learn how to:
|
|
|
|
|
|
|
|
- Use the @ref cv::DescriptorExtractor interface in order to find the feature vector correspondent
|
|
|
|
to the keypoints. Specifically:
|
2014-12-02 00:22:04 +08:00
|
|
|
- Use cv::xfeatures2d::SURF and its function cv::xfeatures2d::SURF::compute to perform the
|
2014-11-27 20:39:05 +08:00
|
|
|
required calculations.
|
|
|
|
- Use a @ref cv::BFMatcher to match the features vector
|
|
|
|
- Use the function @ref cv::drawMatches to draw the detected matches.
|
|
|
|
|
|
|
|
Theory
|
|
|
|
------
|
|
|
|
|
|
|
|
Code
|
|
|
|
----
|
|
|
|
|
|
|
|
This tutorial code's is shown lines below.
|
|
|
|
@code{.cpp}
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <iostream>
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/xfeatures2d.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::xfeatures2d;
|
|
|
|
|
|
|
|
void readme();
|
|
|
|
|
|
|
|
/* @function main */
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
{
|
|
|
|
if( argc != 3 )
|
|
|
|
{ return -1; }
|
|
|
|
|
|
|
|
Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
|
|
|
|
Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
|
|
|
|
|
|
|
|
if( !img_1.data || !img_2.data )
|
|
|
|
{ return -1; }
|
|
|
|
|
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
|
|
|
|
int minHessian = 400;
|
|
|
|
|
|
|
|
Ptr<SURF> detector = SURF::create();
|
2015-05-10 19:44:49 +08:00
|
|
|
detector->setHessianThreshold(minHessian);
|
2014-11-27 20:39:05 +08:00
|
|
|
|
|
|
|
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
|
|
|
Mat descriptors_1, descriptors_2;
|
|
|
|
|
2015-05-10 19:44:49 +08:00
|
|
|
detector->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1 );
|
|
|
|
detector->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2 );
|
2014-11-27 20:39:05 +08:00
|
|
|
|
|
|
|
//-- Step 2: Matching descriptor vectors with a brute force matcher
|
|
|
|
BFMatcher matcher(NORM_L2);
|
|
|
|
std::vector< DMatch > matches;
|
|
|
|
matcher.match( descriptors_1, descriptors_2, matches );
|
|
|
|
|
|
|
|
//-- Draw matches
|
|
|
|
Mat img_matches;
|
|
|
|
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
|
|
|
|
|
|
|
|
//-- Show detected matches
|
|
|
|
imshow("Matches", img_matches );
|
|
|
|
|
|
|
|
waitKey(0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* @function readme */
|
|
|
|
void readme()
|
|
|
|
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|
|
|
|
@endcode
|
2014-11-28 00:54:13 +08:00
|
|
|
|
2014-11-27 20:39:05 +08:00
|
|
|
Explanation
|
|
|
|
-----------
|
|
|
|
|
|
|
|
Result
|
|
|
|
------
|
|
|
|
|
2014-11-28 00:54:13 +08:00
|
|
|
Here is the result after applying the BruteForce matcher between the two original images:
|
2014-11-27 20:39:05 +08:00
|
|
|
|
2014-11-28 21:21:28 +08:00
|
|
|
![](images/Feature_Description_BruteForce_Result.jpg)
|