mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
|
import os
|
||
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
import argparse
|
||
|
from common import findFile
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='Use this script to run action recognition using 3D ResNet34',
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument('--input', '-i', help='Path to input video file. Skip this argument to capture frames from a camera.')
|
||
|
parser.add_argument('--model', required=True, help='Path to model.')
|
||
|
parser.add_argument('--classes', default=findFile('action_recongnition_kinetics.txt'), help='Path to classes list.')
|
||
|
|
||
|
# To get net download original repository https://github.com/kenshohara/video-classification-3d-cnn-pytorch
|
||
|
# For correct ONNX export modify file: video-classification-3d-cnn-pytorch/models/resnet.py
|
||
|
# change
|
||
|
# - def downsample_basic_block(x, planes, stride):
|
||
|
# - out = F.avg_pool3d(x, kernel_size=1, stride=stride)
|
||
|
# - zero_pads = torch.Tensor(out.size(0), planes - out.size(1),
|
||
|
# - out.size(2), out.size(3),
|
||
|
# - out.size(4)).zero_()
|
||
|
# - if isinstance(out.data, torch.cuda.FloatTensor):
|
||
|
# - zero_pads = zero_pads.cuda()
|
||
|
# -
|
||
|
# - out = Variable(torch.cat([out.data, zero_pads], dim=1))
|
||
|
# - return out
|
||
|
|
||
|
# To
|
||
|
# + def downsample_basic_block(x, planes, stride):
|
||
|
# + out = F.avg_pool3d(x, kernel_size=1, stride=stride)
|
||
|
# + out = F.pad(out, (0, 0, 0, 0, 0, 0, 0, int(planes - out.size(1)), 0, 0), "constant", 0)
|
||
|
# + return out
|
||
|
|
||
|
# To ONNX export use torch.onnx.export(model, inputs, model_name)
|
||
|
|
||
|
def get_class_names(path):
|
||
|
class_names = []
|
||
|
with open(path) as f:
|
||
|
for row in f:
|
||
|
class_names.append(row[:-1])
|
||
|
return class_names
|
||
|
|
||
|
def classify_video(video_path, net_path):
|
||
|
SAMPLE_DURATION = 16
|
||
|
SAMPLE_SIZE = 112
|
||
|
mean = (114.7748, 107.7354, 99.4750)
|
||
|
class_names = get_class_names(args.classes)
|
||
|
|
||
|
net = cv.dnn.readNet(net_path)
|
||
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
||
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
|
||
|
|
||
|
winName = 'Deep learning image classification in OpenCV'
|
||
|
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
|
||
|
cap = cv.VideoCapture(video_path)
|
||
|
while cv.waitKey(1) < 0:
|
||
|
frames = []
|
||
|
for _ in range(SAMPLE_DURATION):
|
||
|
hasFrame, frame = cap.read()
|
||
|
if not hasFrame:
|
||
|
exit(0)
|
||
|
frames.append(frame)
|
||
|
|
||
|
inputs = cv.dnn.blobFromImages(frames, 1, (SAMPLE_SIZE, SAMPLE_SIZE), mean, True, crop=True)
|
||
|
inputs = np.transpose(inputs, (1, 0, 2, 3))
|
||
|
inputs = np.expand_dims(inputs, axis=0)
|
||
|
net.setInput(inputs)
|
||
|
outputs = net.forward()
|
||
|
class_pred = np.argmax(outputs)
|
||
|
label = class_names[class_pred]
|
||
|
|
||
|
for frame in frames:
|
||
|
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
|
cv.rectangle(frame, (0, 10 - labelSize[1]),
|
||
|
(labelSize[0], 10 + baseLine), (255, 255, 255), cv.FILLED)
|
||
|
cv.putText(frame, label, (0, 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
||
|
cv.imshow(winName, frame)
|
||
|
if cv.waitKey(1) & 0xFF == ord('q'):
|
||
|
break
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
args, _ = parser.parse_known_args()
|
||
|
classify_video(args.input if args.input else 0, args.model)
|